ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum behaviour of pumped and damped triangular Bose Hubbard systems

85   0   0.0 ( 0 )
 نشر من قبل Murray Olsen Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and analyse analogs of optical cavities for atoms using three-well Bose-Hubbard models with pumping and losses. We consider triangular configurations. With one well pumped and one damped, we find that both the mean-field dynamics and the quantum statistics show a quantitative dependence on the choice of damped well. The systems we analyse remain far from equilibrium, preserving good coherence between the wells in the steady-state. We find quadrature squeezing and mode entanglement for some parameter regimes and demonstrate that the trimer with pumping and damping at the same well is the stronger option for producing non-classical states. Due to recent experimental advances, it should be possible to demonstrate the effects we investigate and predict.

قيم البحث

اقرأ أيضاً

47 - M.K. Olsen 2016
We propose and analyse a pumped Bose-Hubbard dimer as a source of continuous-variable Einstein-Podolsky-Rosen (EPR) steering with non-Gaussian statistics. We use the truncated Wigner representation to calculate third and fourth order cumulants, findi ng clear signals of non-Gaussianity. We also calculate the products of inferred quadrature variances which indicate that states demonstrating the EPR paradox are present. Our proposed experimental configuration is extrapolated from current experimental techniques and adds another possibility to the current toolbox of quantum atom optics.
Several proposals for quantum computation utilize a lattice type architecture with qubits trapped by a periodic potential. For systems undergoing many body interactions described by the Bose-Hubbard Hamiltonian, the ground state of the system carries number fluctuations that scale with the number of qubits. This process degrades the initialization of the quantum computer register and can introduce errors during error correction. In an earlier manuscript we proposed a solution to this problem tailored to the loading of cold atoms into an optical lattice via the Mott Insulator phase transition. It was shown that by adding an inhomogeneity to the lattice and performing a continuous measurement, the unit filled state suitable for a quantum computer register can be maintained. Here, we give a more rigorous derivation of the register fidelity in homogeneous and inhomogeneous lattices and provide evidence that the protocol is effective in the finite temperature regime.
145 - D. Nagy , G. Konya , P. Domokos 2018
We investigate the quantum measurement noise effects on the dynamics of an atomic Bose lattice gas inside an optical resonator. We describe the dynamics by means of a hybrid model consisting of a Bose--Hubbard Hamiltonian for the atoms and a Heisenbe rg--Langevin equation for the lossy cavity field mode. We assume that the atoms are prepared initially in the ground state of the lattice Hamiltonian and then start to interact with the cavity mode. We show that the cavity field fluctuations originating from the dissipative outcoupling of photons from the resonator lead to vastly different effects in the different possible ground state phases, i.e., the superfluid, the supersolid, the Mott- and the charge-density-wave phases. In the former two phases with the presence of a superfluid wavefunction, the quantum measurement noise appears as a driving term leading to excess noise depletion of the ground state. The time scale for the system to leave the ground scale is determined analytically. For the latter two incompressible phases, the quantum noise results in the fluctuation of the chemical potential. We derive an analytical expression for the corresponding broadening of the quasiparticle resonances.
We study ergodicity breaking in the clean Bose-Hubbard chain for small hopping strength. We see the existence of a non-ergodic regime by means of indicators as the half-chain entanglement entropy of the eigenstates, the average level spacing ratio, { the properties of the eigenstate-expectation distribution of the correlation and the scaling of the Inverse Participation Ratio averages.} We find that this ergodicity breaking {is different from many-body localization} because the average half-chain entanglement entropy of the eigenstates obeys volume law. This ergodicity breaking appears unrelated to the spectrum being organized in quasidegenerate multiplets at small hopping and finite system sizes, so in principle it can survive also for larger system sizes. We find that some imbalance oscillations in time which could mark the existence of a glassy behaviour in space are well described by the dynamics of a single symmetry-breaking doublet and {quantitatively} captured by a perturbative effective XXZ model. We show that the amplitude of these oscillations vanishes in the large-size limit. {Our findings are numerically obtained for systems with $L < 12$. Extrapolations of our scalings to larger system sizes should be taken with care, as discussed in the paper.
We study the Bose and Fermi Hubbard model in the (formal) limit of large coordination numbers $Zgg1$. Via an expansion into powers of $1/Z$, we establish a hierarchy of correlations which facilitates an approximate analytical derivation of the time-e volution of the reduced density matrices for one and two sites etc. With this method, we study the quantum dynamics (starting in the ground state) after a quantum quench, i.e., after suddenly switching the tunneling rate $J$ from zero to a finite value, which is still in the Mott regime. We find that the reduced density matrices approach a (quasi) equilibrium state after some time. For one lattice site, this state can be described by a thermal state (within the accuracy of our approximation). However, the (quasi) equilibrium state of the reduced density matrices for two sites including the correlations cannot be described by a thermal state. Thus, real thermalization (if it occurs) should take much longer time. This behavior has already been observed in other scenarios and is sometimes called ``pre-thermalization. Finally, we compare our results to numerical simulations for finite lattices in one and two dimensions and find qualitative agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا