ﻻ يوجد ملخص باللغة العربية
We study the Bose and Fermi Hubbard model in the (formal) limit of large coordination numbers $Zgg1$. Via an expansion into powers of $1/Z$, we establish a hierarchy of correlations which facilitates an approximate analytical derivation of the time-evolution of the reduced density matrices for one and two sites etc. With this method, we study the quantum dynamics (starting in the ground state) after a quantum quench, i.e., after suddenly switching the tunneling rate $J$ from zero to a finite value, which is still in the Mott regime. We find that the reduced density matrices approach a (quasi) equilibrium state after some time. For one lattice site, this state can be described by a thermal state (within the accuracy of our approximation). However, the (quasi) equilibrium state of the reduced density matrices for two sites including the correlations cannot be described by a thermal state. Thus, real thermalization (if it occurs) should take much longer time. This behavior has already been observed in other scenarios and is sometimes called ``pre-thermalization. Finally, we compare our results to numerical simulations for finite lattices in one and two dimensions and find qualitative agreement.
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating
We simulate numerically the dynamics of strongly correlated bosons in a two-leg ladder subject to a time-dependent energy bias between the two chains. When all atoms are initially in the leg with higher energy, we find a drastic reduction of the inte
We show that a two-atoms Bose-Hubbard model exhibits three different phases in the behavior of thermal entanglement in its parameter space. These phases are demonstrated to be traceable back to the existence of quantum phase transitions in the same s
In this paper, we analyze a proposed gravity dual to a $SU(N)$ Bose-Hubbard model, as well as construct a holographic dual of a $SU(N)$ Fermi-Hubbard model from D-branes in string theory. In both cases, the $SU(N)$ is dynamical, i.e. the hopping degr
We study the Mott phase of the Bose-Hubbard model on a tilted lattice. On the (Gutzwiller) mean-field level, the tilt has no effect -- but quantum fluctuations entail particle-hole pair creation via tunneling. For small potential gradients (long-wave