ﻻ يوجد ملخص باللغة العربية
As a means of human-based computation, crowdsourcing has been widely used to annotate large-scale unlabeled datasets. One of the obvious challenges is how to aggregate these possibly noisy labels provided by a set of heterogeneous annotators. Another challenge stems from the difficulty in evaluating the annotator reliability without even knowing the ground truth, which can be used to build incentive mechanisms in crowdsourcing platforms. When each instance is associated with many possible labels simultaneously, the problem becomes even harder because of its combinatorial nature. In this paper, we present new flexible Bayesian models and efficient inference algorithms for multi-label annotation aggregation by taking both annotator reliability and label dependency into account. Extensive experiments on real-world datasets confirm that the proposed methods outperform other competitive alternatives, and the model can recover the type of the annotators with high accuracy.
Annotated images are required for both supervised model training and evaluation in image classification. Manually annotating images is arduous and expensive, especially for multi-labeled images. A recent trend for conducting such laboursome annotatio
In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more
Disaster monitoring is challenging due to the lake of infrastructures in monitoring areas. Based on the theory of Game-With-A-Purpose (GWAP), this paper contributes to a novel large-scale crowdsourcing disaster monitoring system. The system analyzes
In this paper, we present empirical analysis on basic and depression specific multi-emotion mining in Tweets with the help of state of the art multi-label classifiers. We choose our basic emotions from a hybrid emotion model consisting of the common
One of the key problems in multi-label text classification is how to take advantage of the correlation among labels. However, it is very challenging to directly model the correlations among labels in a complex and unknown label space. In this paper,