ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular beam epitaxy growth of the highly conductive oxide SrMoO$_3$

112   0   0.0 ( 0 )
 نشر من قبل Hiroshi Takatsu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SrMoO$_3$ is a promising material for its excellent electrical conductivity, but growing high-quality thin films remains a challenge. Here we synthesized epitaxial films of SrMoO$_3$ using the molecular beam epitaxy (MBE) technique under a low oxygen-flow rate. Introduction of SrTiO$_3$ buffer layers of 4--8 unit cells between the film and the (001)-oriented SrTiO$_3$ or KTaO$_3$ substrate was crucial to remove impurities and/or roughness of the film surface. The obtained film shows improved electrical conductivities as compared with films obtained by other techniques. The high quality of the SrMoO$_3$ film is also verified by angle-resolved photoemission spectroscopy (ARPES) measurements showing clear Fermi surfaces.

قيم البحث

اقرأ أيضاً

We report on the growth of epitaxial Sr2RuO4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional MBE that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr2RuO4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.
Hole-doped perovskite bismuthates such as Ba$_{1-x}$K$_x$BiO$_3$ and Sr$_{1-x}$K$_x$BiO$_3$ are well-known bismuth-based oxide high-transition-temperature superconductors. Reported thin bismuthate films show relatively low quality, likely due to thei r large lattice mismatch with the substrate and a low sticking coefficient of Bi at high temperatures. Here, we report the successful epitaxial thin film growth of the parent compound strontium bismuthate SrBiO$_3$ on SrO-terminated SrTiO$_3$ (001) substrates by molecular beam epitaxy. Two different growth methods, high-temperature co-deposition or recrystallization cycles of low-temperature deposition plus high-temperature annealing, are developed to improve the epitaxial growth. SrBiO$_3$ has a pseudocubic lattice constant $sim$4.25 AA, an $sim$8.8% lattice mismatch on SrTiO$_3$ substrate, leading to a large strain in the first few unit cells. Films thicker than 6 unit cells prepared by both methods are fully relaxed to bulk lattice constant and have similar quality. Compared to high-temperature co-deposition, the recrystallization method can produce higher quality 1-6 unit cell films that are coherently or partially strained. Photoemission experiments reveal the bonding and antibonding states close to the Fermi level due to Bi and O hybridization, in good agreement with density functional theory calculations. This work provides general guidance to the synthesis of high-quality perovskite bismuthate films.
The growth of single layer graphene nanometer size domains by solid carbon source molecular beam epitaxy on hexagonal boron nitride (h-BN) flakes is demonstrated. Formation of single-layer graphene is clearly apparent in Raman spectra which display s harp optical phonon bands. Atomic-force microscope images and Raman maps reveal that the graphene grown depends on the surface morphology of the h-BN substrates. The growth is governed by the high mobility of the carbon atoms on the h-BN surface, in a manner that is consistent with van der Waals epitaxy. The successful growth of graphene layers depends on the substrate temperature, but is independent of the incident flux of carbon atoms.
The Pd, and Pt based ABO2 delafossites are a unique class of layered, triangular oxides with 2D electronic structure and a large conductivity that rivals the noble metals. Here, we report successful growth of the metallic delafossite PdCoO2 by molecu lar beam epitaxy (MBE). The key challenge is controlling the oxidation of Pd in the MBE environment where phase-segregation is driven by the reduction of PdCoO2 to cobalt oxide and metallic palladium. This is overcome by combining low temperature (300 {deg}C) atomic layer-by-layer MBE growth in the presence of reactive atomic oxygen with a post-growth high-temperature anneal. Thickness dependence (5-265 nm) reveals that in the thin regime (<75 nm), the resistivity scales inversely with thickness, likely dominated by surface scattering; for thicker films the resistivity approaches the values reported for the best bulk-crystals at room temperature, but the low temperature resistivity is limited by structural twins. This work shows that the combination of MBE growth and a post-growth anneal provides a route to creating high quality films in this interesting family of layered, triangular oxides.
591 - T.W. Zhang , Z.W. Mao , Z.B. Gu 2017
Transition metal oxide heterostructures and interfaces host a variety of exciting quantum phases and can be grown with atomic-scale precision by utilising the intensity oscillations of $in$ $situ$ reflection high-energy electron diffraction (RHEED). However, establishing a stable oscillation pattern in the growth calibration of complex oxides films is very challenging and time consuming. Here, we develop a substantially more efficient and reliable growth calibration method for complex oxide films using molecular beam epitaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا