ﻻ يوجد ملخص باللغة العربية
Studying the influence of breaking time-reversal symmetry on topological insulator surface states is an important problem of current interest in condensed matter physics and could provide a route toward proof-of-concept spintronic devices that exploit spin-textured surface states. Here, we develop a new model system for studying the effect of breaking time-reversal symmetry: a hybrid heterostructure wherein a ferromagnetic semiconductor Ga1-xMnxAs, with an out-of-plane component of magnetization, is cleanly interfaced with a three-dimensional topological insulator (Bi,Sb)2(Te,Se)3 by molecular beam epitaxy. Lateral electrical transport in this bilayer is dominated by conduction through the topological insulator whose conductivity is a few orders of magnitude higher than that of the highly resistive ferromagnetic semiconductor with a low Mn concentration. Electrical transport measurements of a top-gated heterostructure device reveal a crossover from weak anti-localization (negative magneto-conductance) to weak localization (positive magneto-conductance) as the temperature is lowered or as the chemical potential approaches the Dirac point. This is accompanied by a systematic emergence of an anomalous Hall effect. These results are interpreted in terms of the opening of a gap at the Dirac point as a result of the exchange coupling between the topological insulator surface state and the ferromagnetic ordering in the Ga1-xMnxAs layer. Our study shows that this hybrid system is well suited to explore topological quantum phenomena and to realize proof-of-concept demonstrations of topological spintronic devices at cryogenic temperatures.
Magnetotransport measurements are a popular way of characterizing the electronic structure of topological materials and often the resulting datasets cannot be described by the well-known Drude model due to large, non-parabolic contributions. In this
Recent topological band theory distinguishes electronic band insulators with respect to various symmetries and topological invariants, most commonly, the time reversal symmetry and the $rm Z_2$ invariant. The interface of two topologically distinct i
Fascinating phenomena have been known to arise from the Dirac theory of relativistic quantum mechanics, which describes high energy particles having linear dispersion relations. Electrons in solids usually have non-relativistic dispersion relations b
We study the behavior of spinless fermions in superconducting state, in which the phases of the superconducting order parameter depend on the direction of the link. We find that the energy of the superconductor depends on the phase differences of the
We consider a natural generalization of the lattice model for a periodic array of two layers, A and B, of spinless electrons proposed by Fu [Phys. Rev. Lett. 106, 106802 (2011)] as a prototype for a crystalline insulator. This model has time-reversal