ﻻ يوجد ملخص باللغة العربية
In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we fill the gap, and in turn formulate a unified soft theorem valid for gravitons, dilatons and B-fields in any tree-level scattering amplitude involving the three massless states. The new soft theorem is fixed by means of on-shell gauge invariance and enters at the subleading order of the gravitons soft theorem. In contrast to the subsubleading soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible to establish a gauge invariant decomposition of the amplitudes to any order in the soft expansion. We check explicitly the new soft theorem in the bosonic string and in Type II superstring theories, and furthermore demonstrate that, at the next order in the soft expansion, totally gauge invariant terms appear in both string theories which cannot be factorized into a soft theorem.
Recently it was conjectured that a certain infinite-dimensional diagonal subgroup of BMS supertranslations acting on past and future null infinity (${mathscr I}^-$ and ${mathscr I}^+$) is an exact symmetry of the quantum gravity ${cal S}$-matrix, and
Recently, new soft graviton theorem proposed by Cachazo and Strominger has inspired a lot of works. In this note, we use the KLT-formula to investigate the theorem. We have shown how the soft behavior of color ordered Yang-Mills amplitudes can be com
In this note we show that by fixing the multiloop Green function in the closed bosonic string to be Arakelovs Green function, one obtains factorization of scattering amplitudes with a softly emitted dilaton to the same level as with a graviton to all
We study the soft behavior of two seemingly different particles that are both referred to as dilatons in the literature, namely the one that appears in theories of gravity and in string theory and the Nambu-Goldstone boson of spontaneously broken con
Asymptotic symmetries of theories with gravity in d=2m+2 spacetime dimensions are reconsidered for m>1 in light of recent results concerning d=4 BMS symmetries. Weinbergs soft graviton theorem in 2m+2 dimensions is re-expressed as a Ward identity for