ﻻ يوجد ملخص باللغة العربية
Recently, new soft graviton theorem proposed by Cachazo and Strominger has inspired a lot of works. In this note, we use the KLT-formula to investigate the theorem. We have shown how the soft behavior of color ordered Yang-Mills amplitudes can be combined with KLT relation to give the soft behavior of gravity amplitudes. As a byproduct, we find two nontrivial identities of the KLT momentum kernel must hold.
Recently it was conjectured that a certain infinite-dimensional diagonal subgroup of BMS supertranslations acting on past and future null infinity (${mathscr I}^-$ and ${mathscr I}^+$) is an exact symmetry of the quantum gravity ${cal S}$-matrix, and
Asymptotic symmetries of theories with gravity in d=2m+2 spacetime dimensions are reconsidered for m>1 in light of recent results concerning d=4 BMS symmetries. Weinbergs soft graviton theorem in 2m+2 dimensions is re-expressed as a Ward identity for
We show that the form of the recently proposed subleading soft graviton and gluon theorems in any dimension are severely constrained by elementary arguments based on Poincare and gauge invariance as well as a self-consistency condition arising from t
In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we fill the gap, and in turn formulate a unified soft theorem valid for gr
It is now well understood that Ward identities associated to the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of d