ترغب بنشر مسار تعليمي؟ اضغط هنا

Note on Soft Graviton theorem by KLT Relation

110   0   0.0 ( 0 )
 نشر من قبل Chih-Hao Fu
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, new soft graviton theorem proposed by Cachazo and Strominger has inspired a lot of works. In this note, we use the KLT-formula to investigate the theorem. We have shown how the soft behavior of color ordered Yang-Mills amplitudes can be combined with KLT relation to give the soft behavior of gravity amplitudes. As a byproduct, we find two nontrivial identities of the KLT momentum kernel must hold.



قيم البحث

اقرأ أيضاً

Recently it was conjectured that a certain infinite-dimensional diagonal subgroup of BMS supertranslations acting on past and future null infinity (${mathscr I}^-$ and ${mathscr I}^+$) is an exact symmetry of the quantum gravity ${cal S}$-matrix, and an associated Ward identity was derived. In this paper we show that this supertranslation Ward identity is precisely equivalent to Weinbergs soft graviton theorem. Along the way we construct the canonical generators of supertranslations at ${mathscr I}^pm$, including the relevant soft graviton contributions. Boundary conditions at the past and future of ${mathscr I}^pm$ and a correspondingly modified Dirac bracket are required. The soft gravitons enter as boundary modes and are manifestly the Goldstone bosons of spontaneously broken supertranslation invariance.
Asymptotic symmetries of theories with gravity in d=2m+2 spacetime dimensions are reconsidered for m>1 in light of recent results concerning d=4 BMS symmetries. Weinbergs soft graviton theorem in 2m+2 dimensions is re-expressed as a Ward identity for the gravitational S-matrix. The corresponding asymptotic symmetries are identified with 2m+2-dimensional supertranslations. An alternate derivation of these asymptotic symmetries as diffeomorphisms which preserve finite-energy boundary conditions at null infinity and act non-trivially on physical data is given. Our results differ from those of previous analyses whose stronger boundary conditions precluded supertranslations for d>4. We find for all even d that supertranslation symmetry is spontaneously broken in the conventional vacuum and identify soft gravitons as the corresponding Goldstone bosons.
We show that the form of the recently proposed subleading soft graviton and gluon theorems in any dimension are severely constrained by elementary arguments based on Poincare and gauge invariance as well as a self-consistency condition arising from t he distributional nature of scattering amplitudes. Combined with the assumption of a local form as it would arise from a Ward identity the orbital part of the subleading operators is completely fixed by the leading universal Weinberg soft pole behavior. The polarization part of the differential subleading soft operators in turn is determined up to a single numerical factor for each hard leg at every order in the soft momentum expansion. In four dimensions, factorization of the Lorentz group allows to fix the subleading operators completely.
In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we fill the gap, and in turn formulate a unified soft theorem valid for gr avitons, dilatons and B-fields in any tree-level scattering amplitude involving the three massless states. The new soft theorem is fixed by means of on-shell gauge invariance and enters at the subleading order of the gravitons soft theorem. In contrast to the subsubleading soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible to establish a gauge invariant decomposition of the amplitudes to any order in the soft expansion. We check explicitly the new soft theorem in the bosonic string and in Type II superstring theories, and furthermore demonstrate that, at the next order in the soft expansion, totally gauge invariant terms appear in both string theories which cannot be factorized into a soft theorem.
It is now well understood that Ward identities associated to the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of d ouble soft factorization theorems can be recovered. By making connections with earlier works in the literature, we argue that at the sub-leading order, these double soft graviton theorems are the so-called consecutive double soft graviton theorems. We also show how these nested Ward identities can be understood as Ward identities associated to BMS symmetries in scattering states defined around (non-Fock) vacua parametrized by supertranslations or superrotations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا