ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bright Short Period M-M Eclipsing Binary from the KELT Survey: Magnetic Activity and the Mass-Radius Relationship for M-dwarfs

425   0   0.0 ( 0 )
 نشر من قبل Joseph Rodriguez Jr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of KELT J041621-620046, a moderately bright (J$sim$10.2) M dwarf eclipsing binary system at a distance of 39$pm$3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extremely Little Telescope (KELT) survey. The system has a short orbital period of $sim$1.11 days and consists of components with M$_1$ = $0.447^{-0.047}_{+0.052},M_odot$ and M$_2$ = $0.399^{-0.042}_{+0.046},M_odot$ in nearly circular orbits. The radii of the two stars are R$_1$ = $0.540^{-0.032}_{+0.034},R_odot$ and R$_2$ = $0.453pm0.017,R_odot$. Full system and orbital properties were determined (to $sim$10% error) by conducting an EBOP global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17-28% and cooler by 4-10% than predicted by standard (non-magnetic) stellar models. Strong H$alpha$ emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity.



قيم البحث

اقرأ أيضاً

M-dwarf stars provide very favourable conditions to find habitable worlds beyond our solar system. The estimation of the fundamental parameters of the transiting exoplanets rely on the accuracy of the theoretical predictions for radius and effective temperature of the host M-dwarf, hence the importance of multiple empirical tests of very low-mass star (VLM) models, the theoretical counterpart of M-dwarfs. Recent determinations of mass, radius and effective temperature of a sample of M-dwarfs of known metallicity have disclosed a supposed discontinuity in the effective temperature-radius diagram corresponding to a stellar mass of about 0.2Mo, that has been ascribed to the transition from partially convective to fully convective stars. In this paper we compare existing VLM models to these observations, and find that theory does not predict any discontinuity at around 0.2Mo, rather a smooth change of slope of the effective temperature-radius relationship around this mass value. The appearance of a discontinuity 5is due to naively fitting the empirical data with linear segments. Also, its origin is unrelated to the transition to fully convective structures. We find that this feature is instead an empirical signature for the transition to a regime where electron degeneracy provides an important contribution to the stellar EOS, and constitutes an additional test of the consistency of the theoretical framework for VLM models.
We report on the discovery of four ultra-short period (P<0.18 days) eclipsing M-dwarf binaries in the WFCAM Transit Survey. Their orbital periods are significantly shorter than of any other known main-sequence binary system, and are all significantly below the sharp period cut-off at P~0.22 days as seen in binaries of earlier type stars. The shortest-period binary consists of two M4 type stars in a P=0.112 day orbit. The binaries are discovered as part of an extensive search for short-period eclipsing systems in over 260,000 stellar lightcurves, including over 10,000 M-dwarfs down to J=18 mag, yielding 25 binaries with P<0.23 days. In a popular paradigm, the evolution of short period binaries of cool main-sequence stars is driven by loss of angular momentum through magnetised winds. In this scheme, the observed P~0.22 day period cut-off is explained as being due to timescales that are too long for lower-mass binaries to decay into tighter orbits. Our discovery of low-mass binaries with significantly shorter orbits implies that either these timescales have been overestimated for M-dwarfs, e.g. due to a higher effective magnetic activity, or that the mechanism for forming these tight M-dwarf binaries is different from that of earlier type main-sequence stars.
We present the discovery of thisstar (HD 58730), a very low mass ratio ($q equiv M_2/M_1 approx 0.07$) eclipsing binary (EB) identified by the Kilodegree Extremely Little Telescope (KELT) survey. We present the discovery light curve and perform a glo bal analysis of four high-precision ground-based light curves, the Transiting Exoplanets Survey Satellite (TESS) light curve, radial velocity (RV) measurements, Doppler Tomography (DT) measurements, and the broad-band spectral energy distribution (SED). Results from the global analysis are consistent with a fully convective ($M_2 = 0.22 pm 0.02 M_{odot})$ M star transiting a late-B primary ($M_1 = 3.34^{+0.07}_{-0.09} M_{odot}; T_{rm eff,1} = 11960^{+430}_{-520} {rm K}$). We infer that the primary star is $183_{-30}^{+33}$ Myr old and that the companion stars radius is inflated by $26 pm 8%$ relative to the predicted value from a low-mass isochrone of similar age. We separately and analytically fit for the variability in the out-of-eclipse TESS phase curve, finding good agreement between the resulting stellar parameters and those from the global fit. Such systems are valuable for testing theories of binary star formation and understanding how the environment of a star in a close-but-detached binary affects its physical properties. In particular, we examine how a stars properties in such a binary might differ from the properties it would have in isolation.
In this paper we present the discovery of a highly unequal-mass eclipsing M-dwarf binary, providing a unique constraint on binary star formation theory and on evolutionary models for low-mass binary stars. The binary is discovered using high- precisi on infrared light curves from the WFCAM Transit Survey (WTS) and has an orbital period of 2.44 d. We find stellar masses of M1 = 0.53 (0.02) Msun and M2 = 0.143 (0.006) Msun (mass ratio 0.27), and radii of R1 = 0.51 (0.01) Rsun and R2 = 0.174 (0.006) Rsun. This puts the companion in a very sparsely sampled and important late M-dwarf mass-regime. Since both stars share the same age and metallicity and straddle the theoretical boundary between fully and partially convective stellar interiors, a comparison can be made to model predictions over a large range of M-dwarf masses using the same model isochrone. Both stars appear to have a slightly inflated radius compared to 1 Gyr model predictions for their masses, but future work is needed to properly account for the effects of star spots on the light curve solution. A significant, subsynchronous, ~2.56 d signal with ~2% peak-to-peak amplitude is detected in the WFCAM light curve, which we attribute to rotational modulation of cool star spots. We propose that the subsynchronous rotation is either due to a stable star-spot complex at high latitude on the (magnetically active) primary (i.e. differential rotation), or to additional magnetic braking, or to interaction of the binary with a third body or circumbinary disk during its pre-main-sequence phase.
We present spectroscopic determinations of the effective temperatures, surface gravities and metallicities for 21 M-dwarfs observed at high-resolution (R $sim$ 22,500) in the textit{H}-band as part of the SDSS-IV APOGEE survey. The atmospheric parame ters and metallicities are derived from spectral syntheses with 1-D LTE plane parallel MARCS models and the APOGEE atomic/molecular line list, together with up-to-date H$_{2}$O and FeH molecular line lists. Our sample range in $T_{rm eff}$ from $sim$ 3200 to 3800K, where eleven stars are in binary systems with a warmer (FGK) primary, while the other 10 M-dwarfs have interferometric radii in the literature. We define an $M_{K_{S}}$--Radius calibration based on our M-dwarf radii derived from the detailed analysis of APOGEE spectra and Gaia DR2 distances, as well as a mass-radius relation using the spectroscopically-derived surface gravities. A comparison of the derived radii with interferometric values from the literature finds that the spectroscopic radii are slightly offset towards smaller values, with $Delta$ = -0.01 $pm$ 0.02 $R{star}$/$R_{odot}$. In addition, the derived M-dwarf masses based upon the radii and surface gravities tend to be slightly smaller (by $sim$5-10%) than masses derived for M-dwarf members of eclipsing binary systems for a given stellar radius. The metallicities derived for the 11 M-dwarfs in binary systems, compared to metallicities obtained for their hotter FGK main-sequence primary stars from the literature, shows excellent agreement, with a mean difference of [Fe/H](M-dwarf - FGK primary) = +0.04 $pm$ 0.18 dex, confirming the APOGEE metallicity scale derived here for M-dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا