ﻻ يوجد ملخص باللغة العربية
We present the discovery of thisstar (HD 58730), a very low mass ratio ($q equiv M_2/M_1 approx 0.07$) eclipsing binary (EB) identified by the Kilodegree Extremely Little Telescope (KELT) survey. We present the discovery light curve and perform a global analysis of four high-precision ground-based light curves, the Transiting Exoplanets Survey Satellite (TESS) light curve, radial velocity (RV) measurements, Doppler Tomography (DT) measurements, and the broad-band spectral energy distribution (SED). Results from the global analysis are consistent with a fully convective ($M_2 = 0.22 pm 0.02 M_{odot})$ M star transiting a late-B primary ($M_1 = 3.34^{+0.07}_{-0.09} M_{odot}; T_{rm eff,1} = 11960^{+430}_{-520} {rm K}$). We infer that the primary star is $183_{-30}^{+33}$ Myr old and that the companion stars radius is inflated by $26 pm 8%$ relative to the predicted value from a low-mass isochrone of similar age. We separately and analytically fit for the variability in the out-of-eclipse TESS phase curve, finding good agreement between the resulting stellar parameters and those from the global fit. Such systems are valuable for testing theories of binary star formation and understanding how the environment of a star in a close-but-detached binary affects its physical properties. In particular, we examine how a stars properties in such a binary might differ from the properties it would have in isolation.
We present Mon-735, a detached double-lined eclipsing binary (EB) member of the $sim$3 Myr old NGC 2264 star forming region, detected by Spitzer. We simultaneously model the Spitzer light curves, follow-up Keck/HIRES radial velocities, and the system
Hot subdwarf B stars (sdBs) are evolved, core helium-burning objects located on the extreme horizontal branch. Their formation history is still puzzling as the sdB progenitors must lose nearly all of their hydrogen envelope during the red-giant phase
We report the discovery of KELT J041621-620046, a moderately bright (J$sim$10.2) M dwarf eclipsing binary system at a distance of 39$pm$3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extre
EPIC 216747137 is a new HW~Virginis system discovered by the Kepler spacecraft during its K2 second life. Like the other HW Vir systems, EPIC 216747137 is a post-common-envelope eclipsing binary consisting of a hot subluminous star and a cool low-mas
In this paper, we derive the fundamental properties of 1SWASPJ011351.29+314909.7 (J0113+31), a metal-poor (-0.40 +/- 0.04 dex), eclipsing binary in an eccentric orbit (~0.3) with an orbital period of ~14.277 d. Eclipsing M dwarfs orbiting solar-type