ﻻ يوجد ملخص باللغة العربية
We observe that if f is a continuous function on an interval I and x_0 in I, then f is operator monotone if and only if the function (f(x) - f(x_0)/(x - x_0) is strongly operator convex. Then starting with an operator monotone function f_0, we construct a strongly operator convex function f_1, an (ordinary) operator convex function f_2, and then a new operator monotone function f_3. The process can be continued to obtain an infinite sequence which cycles between the three classes of functions. We also describe two other constructions, similar in spirit. We prove two lemmas which enable a treatment of those aspects of strong operator convexity needed for this paper which is more elementary than previous treatments. And we discuss the functions phi such that the composite phi circ f is operator convex or strongly operator convex whenever f is strongly operator convex.
This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where
Recently the behavior of operator monotone functions on unbounded intervals with respect to the relation of strictly positivity has been investigated. In this paper we deeply study such behavior not only for operator monotone functions but also for o
In a recent paper in Journal of Convex Analysis the authors studied, in non-reflexive Banach spaces, a class of maximal monotone operators, characterized by the existence of a function in Fitzpatricks family of the operator which conjugate is above t
In this paper, we introduce the concept of operator arithmetic-geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for opera
In this paper, we introduce the concept of operator geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for operators which give some refinements of previous results.