In this paper, we introduce the concept of operator geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for operators which give some refinements of previous results.
In this paper, we introduce the concept of operator arithmetic-geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for opera
tors which give some refinements of previous results. Moreover, some unitarily invariant norm inequalities are established.
We introduce and investigate the concept of harmonical $h$-convexity for interval-valued functions. Under this new concept, we prove some new Hermite-Hadamard type inequalities for the interval Riemann integral.
In this article, we prove a Strichartz type inequality %associated with Schrodinger equation for a system of orthonormal functions associated with the special Hermite operator $mathcal{L}=-Delta+frac{1}{4}|z|^{2}-i sum_{1}^{n}left(x_{j} frac{partial}
{partial y_{j}}-y_{j} frac{partial}{partial x_{j}}right), $ where $Delta$ denotes the Laplacian on $mathbb{C}^{n}$.
The Strichartz inequality for the system of orthonormal functions for the Hermite operator $H=-Delta+|x|^2$ on $mathbb{R}^n$ has been proved in cite{lee}, using the classical Strichartz estimates for the free Schrodinger propagator for orthonormal sy
stems cite{frank, frank1} and the link between the Schrodinger kernel and the Mehler kernel associated with the Hermite semigroup cite{SjT}. In this article, we give an alternative proof of the above result in connection with the restriction theorem with respect to the Hermite transform with an optimal behavior of the constant in the limit of a large number of functions. As an application, we show the well-posedness results in Schatten spaces for the nonlinear Hermite-Hartree equation.
For positive semidefinite matrices $A$ and $B$, Ando and Zhan proved the inequalities $||| f(A)+f(B) ||| ge ||| f(A+B) |||$ and $||| g(A)+g(B) ||| le ||| g(A+B) |||$, for any unitarily invariant norm, and for any non-negative operator monotone $f$ on
$[0,infty)$ with inverse function $g$. These inequalities have very recently been generalised to non-negative concave functions $f$ and non-negative convex functions $g$, by Bourin and Uchiyama, and Kosem, respectively. In this paper we consider the related question whether the inequalities $||| f(A)-f(B) ||| le ||| f(|A-B|) |||$, and $||| g(A)-g(B) ||| ge ||| g(|A-B|) |||$, obtained by Ando, for operator monotone $f$ with inverse $g$, also have a similar generalisation to non-negative concave $f$ and convex $g$. We answer exactly this question, in the negative for general matrices, and affirmatively in the special case when $Age ||B||$. In the course of this work, we introduce the novel notion of $Y$-dominated majorisation between the spectra of two Hermitian matrices, where $Y$ is itself a Hermitian matrix, and prove a certain property of this relation that allows to strengthen the results of Bourin-Uchiyama and Kosem, mentioned above.
Ali Taghavi
,Vahid Darvish
,Haji Mohammad Nazari
.
(2015)
.
"Hermite-Hadamard type inequalities for operator geometrically convex functions"
.
Vahid Darvish
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا