ﻻ يوجد ملخص باللغة العربية
We present preliminary results of our grid based modelling (GBM) of the dwarf/subgiant sample of stars observed with Kepler including global asteroseismic parameters. GBM analysis in this work is based on a large grid of stellar models that is characterized by five independent parameters: model mass and age, initial metallicity ($zini$), initial helium ($yini$), and mixing length parameter ($alpha_{mlt}$). Using this grid relaxes assumptions used in all previous GBM work where the initial composition is determined by a single parameter and that $alpha_{mlt}$ is fixed to a solar-calibrated value. The new grid allows us to study, for example, the impact of different galactic chemical enrichment models on the determination of stellar parameters such as mass radius and age. Also, it allows to include new results from stellar atmosphere models on $alpha_{mlt}$ in the GBM analysis in a simple manner. Alternatively, it can be tested if global asteroseismology is a useful tool to constraint our ignorance on quantities such as $yini$ and $alpha_{mlt}$. Initial findings show that mass determination is robust with respect to freedom in the latter quantities, with a 4.4% maximum deviation for extreme assumptions regarding prior information on $yini-zini$ relations and $alpha_{mlt}$. On the other hand, tests carried out so far seem to indicate that global seismology does not have much power to constrain $yini-zini$ relations of $alpha_{mlt}$ values without resourcing to additional information.
With recent advances in modelling stars using high-precision asteroseismology, the systematic effects associated with our assumptions of stellar helium abundance ($Y$) and the mixing-length theory parameter ($alpha_mathrm{MLT}$) are becoming more imp
The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large s
The first gravitational wave detections of mergers between black holes and neutron stars represent a remarkable new regime of high-energy transient astrophysics. The signals observed with LIGO-Virgo detectors come from mergers of extreme physical obj
We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200, Kitt Peak 4-meter, and Bok 2.3-meter telescopes. Using atmospheric models we determine their effective te
We measure rotation periods for 12151 stars in the Kepler field, based on the photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample o