ﻻ يوجد ملخص باللغة العربية
The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modelled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We derive equivalent eddy-diffusion coefficients and use the derived diffusivities in twin ASH numerical simulations. We find a good agreement between the large-scale flows developing in the two codes in the hydrodynamic regime, which encourages further investigation in the magnetohydrodynamic regime for various dynamo solutions.
When stars like our Sun are young they rotate rapidly and are very magnetically active. We explore dynamo action in rapidly rotating suns with the 3-D MHD anelastic spherical harmonic (ASH) code. The magnetic fields built in these dynamos are organiz
We study the convection zones in the outer envelope of hot massive stars which are caused by opacity peaks associated with iron and helium ionization. We determine the occurrence and properties of these convection zones as function of the stellar par
Young solar-type stars rotate rapidly and are very magnetically active. The magnetic fields at their surfaces likely originate in their convective envelopes where convection and rotation can drive strong dynamo action. Here we explore simulations of
The development of 2D and 3D simulations of solar convection has lead to a picture of convection quite unlike the usually assumed Kolmogorov spectrum turbulent flow. We investigate the impact of this changed structure on the dissipation properties of
The ANTARES code has been designed for simulation of astrophysical flows in a variety of situations, in particular in the context of stellar physics. Here, we describe extensions as necessary to model the interaction of pulsation and convection in cl