ﻻ يوجد ملخص باللغة العربية
X-ray Free Electron Lasers (XFELs) have been proven to generate short and powerful radiation pulses allowing for a wide class of novel experiments. If an XFEL facility supports the generation of two X-ray pulses with different wavelengths and controllable delay, the range of possible experiments is broadened even further to include X-ray-pump/X-ray-probe applications. In this work we discuss the possibility of applying a simple and cost-effective method for producing two-color pulses at the SASE3 soft X-ray beamline of the European XFEL. The technique is based on the installation of a magnetic chicane in the baseline undulator and can be accomplished in several steps. We discuss the scientific interest of this upgrade for the Small Quantum Systems (SQS) instrument, in connection with the high-repetition rate of the European XFEL, and we provide start-to-end simulations up to the radiation focus on the sample, proving the feasibility of our concept.
In this paper we have investigated the possibility of the operation of different charges in the bunch train for the nominal design of the XFEL injector and for the case that it is extended by an additional laser system on the cathode. We have examine
Harmonic lasing provides an opportunity to extend the photon energy range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can generate a much more intense, stable, and narrow-band FEL beam
The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by hi
The usage of x-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a large
Techniques like inelastic X-ray scattering (IXS) and nuclear resonance scattering (NRS) are currently limited by the photon flux available at X-ray sources. At $14.4$ keV, third generation synchrotron radiation sources produce a maximum of $10^{10}$