ﻻ يوجد ملخص باللغة العربية
In this paper we have investigated the possibility of the operation of different charges in the bunch train for the nominal design of the XFEL injector and for the case that it is extended by an additional laser system on the cathode. We have examined the problem of similarity of beam optical functions for different bunch charges in a train. We report also about the sensitivity of the beam optical functions on the chosen compression scenario and give an overview over the working points for the settings at the injector for single charge operation as well as combined working points for different bunch pairs.
Harmonic lasing provides an opportunity to extend the photon energy range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can generate a much more intense, stable, and narrow-band FEL beam
X-ray Free Electron Lasers (XFELs) have been proven to generate short and powerful radiation pulses allowing for a wide class of novel experiments. If an XFEL facility supports the generation of two X-ray pulses with different wavelengths and control
Techniques like inelastic X-ray scattering (IXS) and nuclear resonance scattering (NRS) are currently limited by the photon flux available at X-ray sources. At $14.4$ keV, third generation synchrotron radiation sources produce a maximum of $10^{10}$
The usage of x-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a large
The output SASE characteristics of the baseline European XFEL, recently used in the TDRs of scientific instruments and X-ray optics, have been previously optimized assuming uniform undulators without considering the potential of undulator tapering in