ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Sensing of Spin Transport Properties of an Antiferromagnetic Insulator

177   0   0.0 ( 0 )
 نشر من قبل Chunhui Du
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Antiferromagnetic insulators (AFIs) are of significant interest due to their potential to develop next-generation spintronic devices. One major effort in this emerging field is to harness AFIs for long-range spin information communication and storage. Here, we report a non-invasive method to optically access the intrinsic spin transport properties of an archetypical AFI {alpha}-Fe2O3 via nitrogen-vacancy (NV) quantum spin sensors. By NV relaxometry measurements, we successfully detect the time-dependent fluctuations of the longitudinal spin density of {alpha}-Fe2O3. The observed frequency dependence of the NV relaxation rate is in agreement with a theoretical model, from which an intrinsic spin diffusion constant of {alpha}-Fe2O3 is experimentally measured in the absence of external spin biases. Our results highlight the significant opportunity offered by NV centers in diagnosing the underlying spin transport properties in a broad range of high-frequency magnetic materials, which are challenging to access by more conventional measurement techniques.



قيم البحث

اقرأ أيضاً

Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have been widely applied to emerging quantum sensing, imaging, and network efforts, showing unprecedented field sensitivity and nanoscale spatial resolution. Many of these adv antages derive from their excellent quantum-coherence, controllable entanglement, and high fidelity of operations, enabling opportunities to outperform the classical counterpart. Exploiting this cutting-edge quantum metrology, we report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization. The measured field dependence of NV relaxation rates is well correlated to the variation of magnon density and band structure of the magnetic samples, which are challenging to access by the conventional magnetometry methods. Our results highlight the significant opportunities offered by NV centers in diagnosing the noise environment of functional magnetic elements, providing valuable information to design next-generation, high-density, and scalable spintronic devices.
Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambi ent environment. Taking advantage of these strengths, we report on NV-based local sensing of the electrically driven insulator-to-metal transition (IMT) in a proximal Mott insulator. We studied the resistive switching properties of both pristine and ion-irradiated VO2 thin film devices by performing optically detected NV electron spin resonance measurements. These measurements probe the local temperature and magnetic field in electrically biased VO2 devices, which are in agreement with the global transport measurement results. In pristine devices, the electrically-driven IMT proceeds through Joule heating up to the transition temperature while in ion-irradiated devices, the transition occurs non-thermally, well below the transition temperature. Our results provide the first direct evidence for non-thermal electrically induced IMT in a Mott insulator, highlighting the significant opportunities offered by NV quantum sensors in exploring nanoscale thermal and electrical behaviors in Mott materials.
We theoretically study the optical generation of dc spin current (i.e., a spin-current solar cell) in ordered antiferromagnetic and ferrimagnetic insulators, motivated by a recent study on the laser-driven spinon spin current in noncentrosymmetric qu antum spin chains [H. Ishizuka and M. Sato, Phys. Rev. Lett. 122, 197702 (2019)]. Using a non-linear response theory for magnons, we analyze the dc spin current generated by a linearly-polarized electromagnetic wave (typically, terahertz or gigahertz waves). Considering noncentrosymmetric two-sublattice magnets as an example, we find a finite dc spin current conductivity at $T=0$, where no thermally-excited magnons exist; this is in contrast to the case of the spinon spin current, in which the optical transition of the Fermi degenerate spinons plays an essential role. We find that the dc spin-current conductivity is insensitive to the Gilbert damping, i.e., it may be viewed as a shift current carried by bosonic particles (magnons). Our estimate shows that an electric-field intensity of $Esim10^4-10^6$ V/cm is sufficient for an observable spin current. Our theory indicates that the linearly-polarized electromagnetic wave generally produces a dc spin current in noncentrosymmetric magnetic insulators.
The non-trivial topology of the three-dimensional (3D) topological insulator (TI) dictates the appearance of gapless Dirac surface states. Intriguingly, when a 3D TI is made into a nanowire, a gap opens at the Dirac point due to the quantum confineme nt, leading to a peculiar Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these Dirac sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes (MZMs), which play a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here we show that by growing very thin ($sim$40-nm diameter) nanowires of the bulk-insulating topological insulator (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ and by tuning its chemical potential across the Dirac point with gating, one can unambiguously identify the Dirac sub-band structure. Specifically, the resistance measured on gate-tunable four-terminal devices was found to present non-equidistant peaks as a function of the gate voltage, which we theoretically show to be the unique signature of the quantum-confined Dirac surface states. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitised by an $s$-wave superconductor.
Wireless technology relies on the conversion of alternating electromagnetic fields to direct currents, a process known as rectification. While rectifiers are normally based on semiconductor diodes, quantum mechanical non-reciprocal transport effects that enable highly controllable rectification have recently been discovered. One such effect is magnetochiral anisotropy (MCA), where the resistance of a material or a device depends on both the direction of current flow and an applied magnetic field. However, the size of rectification possible due to MCA is usually extremely small, because MCA relies on electronic inversion symmetry breaking which typically stems from intrinsic spin-orbit coupling - a relativistic effect - in a non-centrosymmetric environment. Here, to overcome this limitation, we artificially break inversion symmetry via an applied gate voltage in thin topological insulator (TI) nanowire heterostructures and theoretically predict that such a symmetry breaking can lead to a giant MCA effect. Our prediction is confirmed via experiments on thin bulk-insulating (Bi$_{1-x}$Sb$_{x}$)$_2$Te$_3$ TI nanowires, in which we observe the largest ever reported size of MCA rectification effect in a normal conductor - over 10000 times greater than in a typical material with a large MCA - and its behaviour is consistent with theory. Our findings present new opportunities for future technological applications of topological devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا