ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical Slowing Down of Quadrupole and Hexadecapole Orderings in Iron Pnictide Superconductor

83   0   0.0 ( 0 )
 نشر من قبل Ryosuke Kurihara
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrasonic measurements have been carried out to investigate the critical dynamics of structural and superconducting transitions due to degenerate orbital bands in iron pnictide compounds with the formula Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. The attenuation coefficient $alpha_{mathrm{L}[110]}$ of the longitudinal ultrasonic wave for $(C_{11}+C_{12}+2C_{66})/2$ for $x = 0.036$ reveals the critical slowing down of the relaxation time around the structural transition at $T_mathrm{s} = 65$ K, which is caused by ferro-type ordering of the quadrupole $O_{x^2-y^2}$ coupled to the strain $varepsilon_{xy}$. The attenuation coefficient $alpha_{66}$ of the transverse ultrasonic wave for $C_{66}$ for $x = 0.071$ also exhibits the critical slowing down around the superconducting transition at $T_mathrm{SC} = 23$ K, which is caused by ferro-type ordering of the hexadecapole $H_z^alpha bigl( boldsymbol{r}_i, boldsymbol{r}_j bigr) = O_{xy}bigl( boldsymbol{r}_i bigr) O_{x^2 - y^2}bigl( boldsymbol{r}_j bigr) + O_{x^2 - y^2}bigl( boldsymbol{r}_i bigr) O_{xy}bigl( boldsymbol{r}_j bigr)$ of the bound two-electron state coupled to the rotation $omega_{xy}$. It is proposed that the hexadecapole ordering associated with the superconductivity brings about spontaneous rotation of the macroscopic superconducting state with respect to the host tetragonal lattice.



قيم البحث

اقرأ أيضاً

229 - Alain Audouard 2014
Shubnikov-de Haas (SdH) oscillations and upper critical magnetic field ($H_{c2}$) of the iron-based superconductor FeSe ($T_c$ = 8.6 K) have been studied by tunnel diode oscillator-based measurements in magnetic fields of up to 55 T and temperatures down to 1.6 K. Several Fourier components enter the SdH oscillations spectrum with frequencies definitely smaller than predicted by band structure calculations indicating band renormalization and reconstruction of the Fermi surface at low temperature, in line with previous ARPES data. The Werthamer-Helfand-Hohenberg model accounts for the temperature dependence of $H_{c2}$ for magnetic field applied both parallel (textbf{H} $|$ $ab$) and perpendicular (textbf{H} $|$ $c$) to the iron conducting plane, suggesting that one band mainly controls the superconducting properties in magnetic fields despite the multiband nature of the Fermi surface. Whereas Pauli pair breaking is negligible for textbf{H} $|$ $c$, a Pauli paramagnetic contribution is evidenced for textbf{H} $|$ $ab$ with Maki parameter $alpha$ = 2.1, corresponding to Pauli field $H_{P}$ = 36.5 T
115 - T. Tzen Ong , Piers Coleman 2011
Motivated by the close correlation between transition temperature ($T_c$) and the tetrahedral bond angle of the As-Fe-As layer observed in the iron-based superconductors, we study the interplay between spin and orbital physics of an isolated iron-ars enide tetrahedron embedded in a metallic environment. Whereas the spin Kondo effect is suppressed to low temperatures by Hunds coupling, the orbital degrees of freedom are expected to quantum mechanically quench at high temperatures, giving rise to an overscreened, non-Fermi liquid ground-state. Translated into a dense environment, this critical state may play an important role in the superconductivity of these materials.
The phase diagram of the organic superconductor (TMTSF)_2PF_6 has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K) for the stabilisation of the superconducting ground state featuring a coexistence regime between spin density wave (SDW) and superconductivity (SC). The inhomogeneous character of the said pressure domain is supported by the analysis of the resistivity between T_SDW and T_SC and the superconducting critical current. The onset temperature T_SC is practically constant (1.20+-0.01 K) in this region where only the SC/SDW domain proportion below T_SC is increasing under pressure. An homogeneous superconducting state is recovered above the critical pressure with T_SC falling at increasing pressure. We propose a model comparing the free energy of a phase exhibiting a segregation between SDW and SC domains and the free energy of homogeneous phases which explains fairly well our experimental findings.
110 - L. Degiorgi 2010
The Coulomb repulsion, impeding electrons motion, has an important impact on the charge dynamics. It mainly causes a reduction of the effective metallic Drude weight (proportional to the so-called optical kinetic energy), encountered in the optical c onductivity, with respect to the expectation within the nearly-free electron limit (defining the so-called band kinetic energy), as evinced from band-structure theory. In principle, the ratio between the optical and band kinetic energy allows defining the degree of electronic correlations. Through spectral weight arguments based on the excitation spectrum, we provide an experimental tool, free from any theoretical or band-structure based assumptions, in order to estimate the degree of electronic correlations in several systems. We first address the novel iron-pnictide superconductors, which serve to set the stage for our approach. We then revisit a large variety of materials, ranging from superconductors, to Kondo-like systems as well as materials close to the Mott-insulating state. As comparison we also tackle materials, where the electron-phonon coupling dominates. We establish a direct relationship between the strength of interaction and the resulting reduction of the optical kinetic energy of the itinerant charge carriers.
Quantum criticality in iron pnictides involves both the nematic and antiferromagnetic degrees of freedom, but the relationship between the two types of fluctuations has yet to be clarified. Here we study this problem in the presence of a small extern al uniaxial potential, which breaks the $C_4$-symmetry in the B$_{1g}$ sector. We establish an identity that connects the spin excitation anisotropy, which is the difference of the dynamical spin susceptibilities at $vec{Q}_1=left(pi,0right)$ and $vec{Q}_2=left(0,piright)$, with the dynamical magnetic susceptibility and static nematic susceptibility. Using this identity, we introduce a scaling procedure to determine the dynamical nematic susceptibility in the quantum critical regime, and illustrate the procedure for the case of the optimally Ni-doped BaFe$_2$As$_2$[Y. Song textit{et al.}, Phys. Rev. B 92, 180504 (2015)]. The implications of our results for the overall physics of the iron-based superconductors are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا