ﻻ يوجد ملخص باللغة العربية
The Coulomb repulsion, impeding electrons motion, has an important impact on the charge dynamics. It mainly causes a reduction of the effective metallic Drude weight (proportional to the so-called optical kinetic energy), encountered in the optical conductivity, with respect to the expectation within the nearly-free electron limit (defining the so-called band kinetic energy), as evinced from band-structure theory. In principle, the ratio between the optical and band kinetic energy allows defining the degree of electronic correlations. Through spectral weight arguments based on the excitation spectrum, we provide an experimental tool, free from any theoretical or band-structure based assumptions, in order to estimate the degree of electronic correlations in several systems. We first address the novel iron-pnictide superconductors, which serve to set the stage for our approach. We then revisit a large variety of materials, ranging from superconductors, to Kondo-like systems as well as materials close to the Mott-insulating state. As comparison we also tackle materials, where the electron-phonon coupling dominates. We establish a direct relationship between the strength of interaction and the resulting reduction of the optical kinetic energy of the itinerant charge carriers.
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental man
We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural
We present an approach that combines the local density approximation (LDA) and the dynamical mean-field theory (DMFT) in the framework of the full-potential linear augmented plane waves (FLAPW) method. Wannier-like functions for the correlated shell
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output
We discuss the features of instabilities in binary systems, in particular, for asymmetric nuclear matter. We show its relevance for the interpretation of results obtained in experiments and in ab initio simulations of the reaction between $^{124}Sn+^{124}Sn$ at 50AMeV.}