ﻻ يوجد ملخص باللغة العربية
This is a survey on the theory of skew-cyclic codes based on skew-polynomial rings of automorphism type. Skew-polynomial rings have been introduced and discussed by Ore (1933). Evaluation of skew polynomials and sets of (right) roots were first considered by Lam (1986) and studied in great detail by Lam and Leroy thereafter. After a detailed presentation of the most relevant properties of skew polynomials, we survey the algebraic theory of skew-cyclic codes as introduced by Boucher and Ulmer (2007) and studied by many authors thereafter. A crucial role will be played by skew-circulant matrices. Finally, skew-cyclic codes with designed minimum distance are discussed, and we report on two different kinds of skew-BCH codes, which were designed in 2014 and later.
In this paper, we give conditions for the existence of Hermitian self-dual $Theta-$cyclic and $Theta-$negacyclic codes over the finite chain ring $mathbb{F}_q+umathbb{F}_q$. By defining a Gray map from $R=mathbb{F}_q+umathbb{F}_q$ to $mathbb{F}_{q}^{
A structure theorem of the group codes which are relative projective for the subgroup $lbrace 1 rbrace$ of $G$ is given. With this, we show that all such relative projective group codes in a fixed group algebra $RG$ are in bijection to the chains of
In this paper we consider stabilizer codes over local Frobenius rings. First, we study the relative minimum distances of a stabilizer code and its reduction onto the residue field. We show that for various scenarios, a free stabilizer code over the r
The problem of identifying whether the family of cyclic codes is asymptotically good or not is a long-standing open problem in the field of coding theory. It is known in the literature that some families of cyclic codes such as BCH codes and Reed-Sol
The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Ma