ترغب بنشر مسار تعليمي؟ اضغط هنا

Fuzzy Dark Matter and Non-Standard Neutrino Interactions

112   0   0.0 ( 0 )
 نشر من قبل Jia Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss novel ways in which neutrino oscillation experiments can probe dark matter. In particular, we focus on interactions between neutrinos and ultra-light (fuzzy) dark matter particles with masses of order $10^{-22}$ eV. It has been shown previously that such dark matter candidates are phenomenologically successful and might help ameliorate the tension between predicted and observed small scale structures in the Universe. We argue that coherent forward scattering of neutrinos on fuzzy dark matter particles can significantly alter neutrino oscillation probabilities. These effects could be observable in current and future experiments. We set new limits on fuzzy dark matter interacting with neutrinos using T2K and solar neutrino data, and we estimate the sensitivity of reactor neutrino experiments and of future long-baseline accelerator experiments. These results are based on detailed simulations in GLoBES. We allow the dark matter particle to be either a scalar or a vector boson. In the latter case, we find potentially interesting connections to models addressing various $B$ physics anomalies.

قيم البحث

اقرأ أيضاً

We study neutrino oscillations in a medium of dark matter which generalizes the standard matter effect. A general formula is derived to describe the effect of various mediums and their mediators to neutrinos. Neutrinos and anti-neutrinos receive oppo site contributions from asymmetric distribution of (dark) matter and anti-matter, and thus it could appear in precision measurement of neutrino or anti-neutrino oscillations. Furthermore, the standard neutrino oscillation can occur from the symmetric dark matter effect even for massless neutrinos.
Future dark matter (DM) direct detection searches will be subject to irreducible neutrino backgrounds that will challenge the identification of an actual WIMP signal in experiments without directionality sensitivity. We study the impact of neutrino-q uark non-standard interactions (NSI) on this background, assuming the constraints from neutrino oscillations and the recent COHERENT experiment data, which are relevant for NSI mediated by light mediators, $m_{rm med} lesssim{cal O}$(GeV). We calculate the expected number of neutrino-nucleus elastic scattering events in a Xe-based ton-size dark matter detector, including solar neutrino fluxes from the $pp$ chain and CNO cycle as well as sub-GeV atmospheric fluxes and taking into account NSI effects in both propagation and detection. We find that sizable deviations from the standard model expectation are possible, but are more pronounced for flavor-diagonal couplings, in particular for electron neutrinos. We show that neutrino NSI can enhance or deplete the neutrino-nucleus event rate, which may impact DM searches in multi-ton detectors.
We quantify the effect of gauge bosons from a weakly coupled lepton flavor dependent $U(1)$ interaction on the matter background in the evolution of solar, atmospheric, reactor and long-baseline accelerator neutrinos in the global analysis of oscilla tion data. The analysis is performed for interaction lengths ranging from the Sun-Earth distance to effective contact neutrino interactions. We survey $sim 10000$ set of models characterized by the six relevant fermion $U(1)$ charges and find that in all cases, constraints on the coupling and mass of the $Z$ can be derived. We also find that about 5% of the $U(1)$ model charges lead to a viable LMA-D solution but this is only possible in the contact interaction limit. We explicitly quantify the constraints for a variety of models including $U(1)_{B-3L_e}$, $U(1)_{B-3L_mu}$, $U(1)_{B-3L_tau}$, $U(1)_{B-frac{3}{2}(L_mu+L_tau)}$, $U(1)_{L_e-L_mu}$, $U(1)_{L_e-L_tau}$, $U(1)_{L_e-frac{1}{2}(L_mu+L_tau)}$. We compare the constraints imposed by our oscillation analysis with the strongest bounds from fifth force searches, violation of equivalence principle as well as bounds from scattering experiments and white dwarf cooling. Our results show that generically, the oscillation analysis improves over the existing bounds from gravity tests for $Z$ lighter than $sim 10^{-8} to 10^{-11}$ eV depending on the specific couplings. In the contact interaction limit, we find that for most models listed above there are values of $g$ and $M_{Z}$ for which the oscillation analysis provides constraints beyond those imposed by laboratory experiments. Finally we illustrate the range of $Z$ and couplings leading to a viable LMA-D solution for two sets of models.
The sensitivity of direct detection of dark matter (DM) approaches the so-called neutrino floor below which it is hard to disentangle the DM candidate from the background neutrino. In this work we consider the scenario that no DM signals are reported in various DM direct detection experiments and explore whether the collider searches could probe the DM under the neutrino floor. We adopt several simplified models in which the DM candidate couples only to electroweak gauge bosons or leptons in the standard model through high dimensional operators. After including the RGE running effect we investigate constraints from direct detection, indirect detection and collider searches. The collider search can probe a light DM below neutrino floor. Especially, for the effective interaction of $bar{chi}chi B_{mu u}B^{mu u}$, current data of the mono-photon channel at the 13 TeV LHC has already covered entire parameter space of the neutrino floor.
We study the effects of non-standard interactions on the oscillation pattern of atmospheric neutrinos. We use neutrino oscillograms as our main tool to infer the role of non-standard interactions (NSI) parameters at the probability level in the energ y range, $E in [1,20]$ GeV and zenith angle range, $cos theta in [-1,0]$. We compute the event rates for atmospheric neutrino events in presence of NSI parameters in the energy range $E in [1,10]$ GeV for two different detector configurations - a magnetized iron calorimeter and an unmagnetized liquid Argon time projection chamber which have different sensitivities to NSI parameters due to their complementary characteristics. As an application, we discuss how NSI parameter, $epsilon_{mutau}$ impacts the determination of the correct octant of $theta_{23}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا