ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino Oscillation Constraints on U(1) Models: from Non-Standard Interactions to Long-Range Forces

99   0   0.0 ( 0 )
 نشر من قبل Michele Maltoni
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We quantify the effect of gauge bosons from a weakly coupled lepton flavor dependent $U(1)$ interaction on the matter background in the evolution of solar, atmospheric, reactor and long-baseline accelerator neutrinos in the global analysis of oscillation data. The analysis is performed for interaction lengths ranging from the Sun-Earth distance to effective contact neutrino interactions. We survey $sim 10000$ set of models characterized by the six relevant fermion $U(1)$ charges and find that in all cases, constraints on the coupling and mass of the $Z$ can be derived. We also find that about 5% of the $U(1)$ model charges lead to a viable LMA-D solution but this is only possible in the contact interaction limit. We explicitly quantify the constraints for a variety of models including $U(1)_{B-3L_e}$, $U(1)_{B-3L_mu}$, $U(1)_{B-3L_tau}$, $U(1)_{B-frac{3}{2}(L_mu+L_tau)}$, $U(1)_{L_e-L_mu}$, $U(1)_{L_e-L_tau}$, $U(1)_{L_e-frac{1}{2}(L_mu+L_tau)}$. We compare the constraints imposed by our oscillation analysis with the strongest bounds from fifth force searches, violation of equivalence principle as well as bounds from scattering experiments and white dwarf cooling. Our results show that generically, the oscillation analysis improves over the existing bounds from gravity tests for $Z$ lighter than $sim 10^{-8} to 10^{-11}$ eV depending on the specific couplings. In the contact interaction limit, we find that for most models listed above there are values of $g$ and $M_{Z}$ for which the oscillation analysis provides constraints beyond those imposed by laboratory experiments. Finally we illustrate the range of $Z$ and couplings leading to a viable LMA-D solution for two sets of models.

قيم البحث

اقرأ أيضاً

The Borexino detector measures solar neutrino fluxes via neutrino-electron elastic scattering. Observed spectra are determined by the solar-$ u_{e}$ survival probability $P_{ee}(E)$, and the chiral couplings of the neutrino and electron. Some theorie s of physics beyond the Standard Model postulate the existence of Non-Standard Interactions (NSIs) which modify the chiral couplings and $P_{ee}(E)$. In this paper, we search for such NSIs, in particular, flavor-diagonal neutral current interactions that modify the $ u_e e$ and $ u_tau e$ couplings using Borexino Phase II data. Standard Solar Model predictions of the solar neutrino fluxes for both high- and low-metallicity assumptions are considered. No indication of new physics is found at the level of sensitivity of the detector and constraints on the parameters of the NSIs are placed. In addition, with the same dataset the value of $sin^2theta_W$ is obtained with a precision comparable to that achieved in reactor antineutrino experiments.
We discuss novel ways in which neutrino oscillation experiments can probe dark matter. In particular, we focus on interactions between neutrinos and ultra-light (fuzzy) dark matter particles with masses of order $10^{-22}$ eV. It has been shown previ ously that such dark matter candidates are phenomenologically successful and might help ameliorate the tension between predicted and observed small scale structures in the Universe. We argue that coherent forward scattering of neutrinos on fuzzy dark matter particles can significantly alter neutrino oscillation probabilities. These effects could be observable in current and future experiments. We set new limits on fuzzy dark matter interacting with neutrinos using T2K and solar neutrino data, and we estimate the sensitivity of reactor neutrino experiments and of future long-baseline accelerator experiments. These results are based on detailed simulations in GLoBES. We allow the dark matter particle to be either a scalar or a vector boson. In the latter case, we find potentially interesting connections to models addressing various $B$ physics anomalies.
Searching for non-standard neutrino interactions, as a means for discovering physics beyond the Standard Model, has one of the key goals of dedicated neutrino experiments, current and future. We demonstrate here that much of the parameter space acces sible to such experiments is already ruled out by the RUN II data of the Large Hadron Collider experiment.
We explore the potential to prove light extra gauge $Z^prime$ boson inducing non-standard neutrino interactions (NSIs) in the coherent-elastic neutrino-nucleus scattering (CE$ u $NS) experiments. We intend to examine how the latest COHERENT-CsI and CENNS-10 data can constrain this model. A detailed investigation for the upcoming Ge, LAr-1t, and NaI detectors of COHERENT collaboration has also been made. Depending on numerous other constraints coming from oscillation experiments, muon $ (g-2) $, beam-dump experiments, LHCb, and reactor experiment CONUS, we explore the parameter space in $Z^prime$ boson mass vs coupling constant plane. Moreover, we study the predictions of two-zero textures that are allowed in the concerned model in light of the latest global-fit data.
77 - T. de Boer , R. Busse , A. Kappes 2021
Dark matter (DM) scattering and its subsequent capture in the Sun can boost the local relic density, leading to an enhanced neutrino flux from DM annihilations that is in principle detectable at neutrino telescopes. We calculate the event rates expec ted for a radiative seesaw model containing both scalar triplet and singlet-doublet fermion DM candidates. In the case of scalar DM, the absence of a spin dependent scattering on nuclei results in a low capture rate in the Sun, which is reflected in an event rate of less than one per year in the current IceCube configuration with 86 strings. For singlet-doublet fermion DM, there is a spin dependent scattering process next to the spin independent one, which significantly boosts the event rate and thus makes indirect detection competitive with respect to the direct detection limits imposed by PICO-60. Due to a correlation between both scattering processes, the limits on the spin independent cross section set by XENON1T exclude also parts of the parameter space that can be probed at IceCube. Previously obtained limits by ANTARES, IceCube and Super-Kamiokande from the Sun and the Galactic Center are shown to be much weaker.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا