ﻻ يوجد ملخص باللغة العربية
We study classical two-dimensional frustrated Heisenberg models with generically incommensurate groundstates. A new theory for the spin-nematic order by disorder transition is developed based on the self-consistent determination of the effective exchange coupling bonds. In our approach, fluctuations of the constraint field imposing conservation of the local magnetic moment drive nematicity at low temperatures. The critical temperature is found to be highly sensitive to the peak helimagnetic wavevector, and vanishes continuously when approaching rotation symmetric Lifshitz points. Transitions between symmetry distinct nematic orders may occur by tuning the exchange parameters, leading to lines of bicritical points.
Every singlet state of a quantum spin 1/2 system can be decomposed into a linear combination of valence bond basis states. The range of valence bonds within this linear combination as well as the correlations between them can reveal the nature of the
About a century ago, Born proposed a possible matter of state, ferroelectric fluid, might exist if the dipole moment is strong enough. The experimental realisation of such states needs magnifying molecular polar nature to macroscopic scales in liquid
We study a spin $S$ quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large $S$ and large $N$ methods, we show that this model exhibits a sequence of two phase transitions: from a high temperature sy
We study the plaquette valence-bond solid phase of the spin-1/2 J_1-J_2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S = 1/2 spins on a single plaquette and determine the bond op
We present a large-N variational approach to describe the magnetism of insulating doped semiconductors based on a disorder-generalization of the resonating-valence-bond theory for quantum antiferromagnets. This method captures all the qualitative and