ﻻ يوجد ملخص باللغة العربية
We study the plaquette valence-bond solid phase of the spin-1/2 J_1-J_2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S = 1/2 spins on a single plaquette and determine the bond operator representation for the spin operators in terms of singlet, triplet, and quintet boson operators. The formalism is then applied to the J_1-J_2 model and an effective interacting boson model in terms of singlets and triplets is derived. The effective model is analyzed within the harmonic approximation and the previous results of Zhitomirsky and Ueda [Phys. Rev. B 54, 9007 (1996)] are recovered. By perturbatively including cubic (triplet-triplet-triplet and singlet-triplet-triplet) and quartic interactions, we find that the plaquette valence-bond solid phase is stable within the parameter region 0.34 < J_2/J_1 < 0.59, which is narrower than the harmonic one. Differently from the harmonic approximation, the excitation gap vanishes at both critical couplings J_2 = 0.34 J_1 and J_2 = 0.59 J_1. Interestingly, for J_2 < 0.48 J_1, the excitation gap corresponds to a singlet-triplet excitation at the $Gamma$ point while, for J_2 > 0.48 J_1, it is related to a singlet-singlet excitation at the X = (pi/2,0) point of the tetramerized Brillouin zone.
We study the effect of quantum fluctuations by means of a transverse magnetic field ($Gamma$) on the antiferromagnetic $J_1-J_2$ Ising model on the checkerboard lattice, the two dimensional version of the pyrochlore lattice. The zero-temperature phas
We present numerical evidence for the emergence of an extended valence bond solid (VBS) phase at $T=0$ in the kagome $S=1/2$ Heisenberg antiferromagnet with ferromagnetic further-neighbor interactions. The VBS is located at the boundary between two m
We study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J1 and J2, which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z2 spin
Based on the mapping between $s=1/2$ spin operators and hard-core bosons, we extend the cluster perturbation theory to spin systems and study the whole excitation spectrum of the antiferromagnetic $J_{1}$-$J_{2}$ Heisenberg model on the square lattic
The two dimensional Heisenberg antiferromagnet on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings is investigated in the strong frustration regime (J2/J1>1/2). A new effective field theory describing the long wavelength