ترغب بنشر مسار تعليمي؟ اضغط هنا

Plaquette valence-bond solid in the square lattice J1-J2 antiferromagnet Heisenberg model: a bond operator approach

180   0   0.0 ( 0 )
 نشر من قبل Ricardo Doretto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. L. Doretto




اسأل ChatGPT حول البحث

We study the plaquette valence-bond solid phase of the spin-1/2 J_1-J_2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S = 1/2 spins on a single plaquette and determine the bond operator representation for the spin operators in terms of singlet, triplet, and quintet boson operators. The formalism is then applied to the J_1-J_2 model and an effective interacting boson model in terms of singlets and triplets is derived. The effective model is analyzed within the harmonic approximation and the previous results of Zhitomirsky and Ueda [Phys. Rev. B 54, 9007 (1996)] are recovered. By perturbatively including cubic (triplet-triplet-triplet and singlet-triplet-triplet) and quartic interactions, we find that the plaquette valence-bond solid phase is stable within the parameter region 0.34 < J_2/J_1 < 0.59, which is narrower than the harmonic one. Differently from the harmonic approximation, the excitation gap vanishes at both critical couplings J_2 = 0.34 J_1 and J_2 = 0.59 J_1. Interestingly, for J_2 < 0.48 J_1, the excitation gap corresponds to a singlet-triplet excitation at the $Gamma$ point while, for J_2 > 0.48 J_1, it is related to a singlet-singlet excitation at the X = (pi/2,0) point of the tetramerized Brillouin zone.



قيم البحث

اقرأ أيضاً

202 - M. Sadrzadeh , A. Langari 2014
We study the effect of quantum fluctuations by means of a transverse magnetic field ($Gamma$) on the antiferromagnetic $J_1-J_2$ Ising model on the checkerboard lattice, the two dimensional version of the pyrochlore lattice. The zero-temperature phas e diagram of the model has been obtained by employing a plaquette operator approach (POA). The plaquette operator formalism bosonizes the model, in which a single boson is associated to each eigenstate of a plaquette and the inter-plaquette interactions define an effective Hamiltonian. The excitations of a plaquette would represent an-harmonic fluctuations of the model, which lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a plaquette ordered solid (RPS) state, which breaks lattice translational symmetry, in addition to a unique collinear phase for $J_2>J_1$. The bosonic excitation gap vanishes at the critical points to the N{e}el ($J_2 < J_1$) and collinear ($J_2 > J_1$) ordered phases, which defines the critical phase boundaries. At the homogeneous coupling ($J_2=J_1$) and its close neighborhood, the (canted) RPS state, established from an-harmonic fluctuations, lasts for low fields, $Gamma/J_1lesssim 0.3$, which is followed by a transition to the quantum paramagnet (polarized) phase at high fields. The transition from RPS state to the N{e}el phase is either a deconfined quantum phase transition or a first order one, however a continuous transition occurs between RPS and collinear phases.
We present numerical evidence for the emergence of an extended valence bond solid (VBS) phase at $T=0$ in the kagome $S=1/2$ Heisenberg antiferromagnet with ferromagnetic further-neighbor interactions. The VBS is located at the boundary between two m agnetically ordered regions and extends close to the nearest-neighbor Heisenberg point. It exhibits a diamond-like singlet covering pattern with a $12$-site unit-cell. Our results suggest the possibility of a direct, possibly continuous, quantum phase transition from the neighboring $mathbf{q}=0$ coplanar magnetically ordered phase into the VBS phase. Moreover, a second phase which breaks lattice symmetries, and is of likely spin-nematic type, is found close to the transition to the ferromagnetic phase. The results have been obtained using numerical Exact Diagonalization. We discuss implications of our results on the nature of nearest-neighbor Heisenberg antiferromagnet.
We study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J1 and J2, which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z2 spin liquid. We use the density matrix renormalization group approach with explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders with different boundary conditions. With increasing J2, we find a Neel phase, a plaquette valence-bond (PVB) phase with a finite spin gap, and a possible spin liquid in a small region of J2 between these two phases. From the finite-size scaling of the magnetic order parameter, we estimate that the Neel order vanishes at J2/J1~0.44. For 0.5<J2/J1<0.61, we find dimer correlations and PVB textures whose decay lengths grow strongly with increasing system width, consistent with a long-range PVB order in the two-dimensional limit. The dimer-dimer correlations reveal the s-wave character of the PVB order. For 0.44<J2/J1<0.5, spin order, dimer order, and spin gap are small on finite-size systems and appear to scale to zero with increasing system width, which is consistent with a possible gapless SL or a near-critical behavior. We compare and contrast our results with earlier numerical studies.
Based on the mapping between $s=1/2$ spin operators and hard-core bosons, we extend the cluster perturbation theory to spin systems and study the whole excitation spectrum of the antiferromagnetic $J_{1}$-$J_{2}$ Heisenberg model on the square lattic e. In the Neel phase for $J_{2}lesssim0.4J_{1}$, in addition to the dominant magnon excitation, there is an obvious continuum close to $(pi,0)$ in the Brillouin zone indicating the deconfined spin-1/2 spinon excitations. In the stripe phase for $J_{2}gtrsim0.6J_{1}$, we find similar high-energy two-spinon continuums at $(pi/2,pi/2)$ and $(pi/2,pi)$, respectively. The intermediate phase is characterized by a spectrum with completely deconfined broad continuum, which is attributed to a $Z_{2}$ quantum spin liquid with the aid of a variational-Monte-Carlo analysis.
61 - V. Lante , A. Parola 2006
The two dimensional Heisenberg antiferromagnet on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings is investigated in the strong frustration regime (J2/J1>1/2). A new effective field theory describing the long wavelength physics of the model is derived from the quantum hamiltonian. The structure of the resulting non linear sigma model allows to recover the known spin wave results in the collinear regime, supports the presence of an Ising phase transition at finite temperature and suggests the possible occurrence of a non-magnetic ground state breaking rotational symmetry. By means of Lanczos diagonalizations we investigate the spin system at T=0, focusing our attention on the region where the collinear order parameter is strongly suppressed by quantum fluctuations and a transition to a non-magnetic state occurs. Correlation functions display a remarkable size independence and allow to identify the transition between the magnetic and non-magnetic region of the phase diagram. The numerical results support the presence of a non-magnetic phase with orientational ordering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا