ﻻ يوجد ملخص باللغة العربية
We present ALMA observations of the FW Tau system, a close binary pair of M5 stars with a wide-orbit (300 AU projected separation) substellar companion. The companion is extremely faint and red in the optical and near-infrared, but boasts a weak far-infrared excess and optical/near-infrared emission lines indicative of a primordial accretion disk of gas and dust. The component-resolved 1.3 mm continuum emission is found to be associated only with the companion, with a flux (1.78 +/- 0.03 mJy) that indicates a dust mass of 1-2 M_Earth. While this mass reservoir is insufficient to form a giant planet, it is more than sufficient to produce an analog of the Kepler-42 exoplanetary system or the Galilean satellites. The mass and geometry of the disk-bearing FW Tau companion remains unclear. Near-infrared spectroscopy shows deep water bands that indicate a spectral type later than M5, but substantial veiling prevents a more accurate determination of the effective temperature (and hence mass). Both a disk-bearing planetary-mass companion seen in direct light or a brown dwarf tertiary viewed in light scattered by an edge-on disk or envelope remain possibilities.
We report the discovery of three planetary-mass companions (M = 6--20 $M_{Jup}$) in wide orbits ($rho sim$ 150--300 AU) around the young stars FW Tau (Taurus-Auriga), ROXs 12 (Ophiuchus), and ROXs 42B (Ophiuchus). All three wide planetary-mass compan
Using the Atacama Large Millimeter/submillimeter Array (ALMA), we observed the young Herbig star HD 100546, host to a prominent disk with a deep, wide gap in the dust. The high-resolution 1.3 mm continuum observation reveals fine radial and azimuthal
We report an analysis of the dust disk around DM~Tau, newly observed with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm. The ALMA observations with high sensitivity (8.4~$mu$Jy/beam) and high angular resolution (35~mas, 5.1~au) de
We aim at estimating the dust scale height of protoplanetary disks from millimeter continuum observations. First, we present a general expression of intensity of a ring in a protoplanetary disk, and show that we can constrain the dust scale height by
Astrometric observations of the M9 dwarf TVLM 513$-$46546 taken with the VLBA reveal an astrometric signature consistent with a period of 221 $pm$ 5 days. The orbital fit implies that the companion has a mass m$_{p}$ = 0.35$-$0.42 $M_{J}$, a circular