ﻻ يوجد ملخص باللغة العربية
A common approach for designing scalable algorithms for massive data sets is to distribute the computation across, say $k$, machines and process the data using limited communication between them. A particularly appealing framework here is the simultaneous communication model whereby each machine constructs a small representative summary of its own data and one obtains an approximate/exact solution from the union of the representative summaries. If the representative summaries needed for a problem are small, then this results in a communication-efficient and round-optimal protocol. While many fundamental graph problems admit efficient solutions in this model, two prominent problems are notably absent from the list of successes, namely, the maximum matching problem and the minimum vertex cover problem. Indeed, it was shown recently that for both these problems, even achieving a polylog$(n)$ approximation requires essentially sending the entire input graph from each machine. The main insight of our work is that the intractability of matching and vertex cover in the simultaneous communication model is inherently connected to an adversarial partitioning of the underlying graph across machines. We show that when the underlying graph is randomly partitioned across machines, both these problems admit randomized composable coresets of size $widetilde{O}(n)$ that yield an $widetilde{O}(1)$-approximate solution. This results in an $widetilde{O}(1)$-approximation simultaneous protocol for these problems with $widetilde{O}(nk)$ total communication when the input is randomly partitioned across $k$ machines. We further prove the optimality of our results. Finally, by a standard application of composable coresets, our results also imply MapReduce algorithms with the same approximation guarantee in one or two rounds of communication
We present a near-tight analysis of the average query complexity -- `a la Nguyen and Onak [FOCS08] -- of the randomized greedy maximal matching algorithm, improving over the bound of Yoshida, Yamamoto and Ito [STOC09]. For any $n$-vertex graph of ave
Maximum weight matching is one of the most fundamental combinatorial optimization problems with a wide range of applications in data mining and bioinformatics. Developing distributed weighted matching algorithms is challenging due to the sequential n
Reconfiguration schedules, i.e., sequences that gradually transform one solution of a problem to another while always maintaining feasibility, have been extensively studied. Most research has dealt with the decision problem of whether a reconfigurati
We present a massively parallel algorithm, with near-linear memory per machine, that computes a $(2+varepsilon)$-approximation of minimum-weight vertex cover in $O(loglog d)$ rounds, where $d$ is the average degree of the input graph. Our result fi
We give efficient distributed algorithms for the minimum vertex cover problem in bipartite graphs in the CONGEST model. From KH{o}nigs theorem, it is well known that in bipartite graphs the size of a minimum vertex cover is equal to the size of a max