ﻻ يوجد ملخص باللغة العربية
We give efficient distributed algorithms for the minimum vertex cover problem in bipartite graphs in the CONGEST model. From KH{o}nigs theorem, it is well known that in bipartite graphs the size of a minimum vertex cover is equal to the size of a maximum matching. We first show that together with an existing $O(nlog n)$-round algorithm for computing a maximum matching, the constructive proof of KH{o}nigs theorem directly leads to a deterministic $O(nlog n)$-round CONGEST algorithm for computing a minimum vertex cover. We then show that by adapting the construction, we can also convert an emph{approximate} maximum matching into an emph{approximate} minimum vertex cover. Given a $(1-delta)$-approximate matching for some $delta>1$, we show that a $(1+O(delta))$-approximate vertex cover can be computed in time $O(D+mathrm{poly}(frac{log n}{delta}))$, where $D$ is the diameter of the graph. When combining with known graph clustering techniques, for any $varepsilonin(0,1]$, this leads to a $mathrm{poly}(frac{log n}{varepsilon})$-time deterministic and also to a slightly faster and simpler randomized $O(frac{log n}{varepsilon^3})$-round CONGEST algorithm for computing a $(1+varepsilon)$-approximate vertex cover in bipartite graphs. For constant $varepsilon$, the randomized time complexity matches the $Omega(log n)$ lower bound for computing a $(1+varepsilon)$-approximate vertex cover in bipartite graphs even in the LOCAL model. Our results are also in contrast to the situation in general graphs, where it is known that computing an optimal vertex cover requires $tilde{Omega}(n^2)$ rounds in the CONGEST model and where it is not even known how to compute any $(2-varepsilon)$-approximation in time $o(n^2)$.
Reconfiguration schedules, i.e., sequences that gradually transform one solution of a problem to another while always maintaining feasibility, have been extensively studied. Most research has dealt with the decision problem of whether a reconfigurati
The Connected Vertex Cover problem, where the goal is to compute a minimum set of vertices in a given graph which forms a vertex cover and induces a connected subgraph, is a fundamental combinatorial problem and has received extensive attention in va
A famous conjecture of Tuza states that the minimum number of edges needed to cover all the triangles in a graph is at most twice the maximum number of edge-disjoint triangles. This conjecture was couched in a broader setting by Aharoni and Zerbib wh
A common approach for designing scalable algorithms for massive data sets is to distribute the computation across, say $k$, machines and process the data using limited communication between them. A particularly appealing framework here is the simulta
We present a massively parallel algorithm, with near-linear memory per machine, that computes a $(2+varepsilon)$-approximation of minimum-weight vertex cover in $O(loglog d)$ rounds, where $d$ is the average degree of the input graph. Our result fi