ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of the Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point

67   0   0.0 ( 0 )
 نشر من قبل Tao Hong
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spontaneous symmetry-breaking quantum phase transitions play an essential role in condensed matter physics. The collective excitations in the broken-symmetry phase near the quantum critical point can be characterized by fluctuations of phase and amplitude of the order parameter. The phase oscillations correspond to the massless Nambu$-$Goldstone modes whereas the massive amplitude mode, analogous to the Higgs boson in particle physics, is prone to decay into a pair of low-energy Nambu$-$Goldstone modes in low dimensions. Especially, observation of a Higgs amplitude mode in two dimensions is an outstanding experimental challenge. Here, using the inelastic neutron scattering and applying the bond-operator theory, we directly and unambiguously identify the Higgs amplitude mode in a two-dimensional S=1/2 quantum antiferromagnet C$_9$H$_{18}$N$_2$CuBr$_4$ near a quantum critical point in two dimensions. Owing to an anisotropic energy gap, it kinematically prevents such decay and the Higgs amplitude mode acquires an infinite lifetime.



قيم البحث

اقرأ أيضاً

146 - A. Rancon , N. Dupuis 2014
We study the Higgs amplitude mode in the relativistic quantum O($N$) model in two space dimensions. Using the nonperturbative renormalization group we compute the O($N$)-invariant scalar susceptibility in the vicinity of the zero-temperature quantum critical point. In the zero-temperature ordered phase, we find a well defined Higgs resonance for $N=2$ with universal properties in agreement with quantum Monte Carlo simulations. The resonance persists at finite temperature below the Berezinskii-Kosterlitz-Thouless transition temperature. In the zero-temperature disordered phase, we find a maximum in the spectral function which is however not related to a putative Higgs resonance. Furthermore we show that the resonance is strongly suppressed for $Ngeq 3$.
Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs2CuCl4 were performed for the longitudinal modes c11 and c33 in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field sh ows a mild softening at low temperature and displays a small kink-like anomaly at TN. Isothermal measurements at T < TN of the sound attenuation reveal two closely-spaced features of different character on approaching the materials quantum-critical point (QCP) around Bs = 8.5 T for B // a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature TN(B). The second anomaly which is rounded and which becomes reduced in size upon cooling is assigned to the materials spin-liquid properties preceding the long-range antiferromagnetic ordering. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/kB = 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.
227 - J. Bauer , P. Jakubczyk , 2011
We compute the transition temperature $T_c$ and the Ginzburg temperature $T_{rm G}$ above $T_c$ near a quantum critical point at the boundary of an ordered phase with a broken discrete symmetry in a two-dimensional metallic electron system. Our calcu lation is based on a renormalization group analysis of the Hertz action with a scalar order parameter. We provide analytic expressions for $T_c$ and $T_{rm G}$ as a function of the non-thermal control parameter for the quantum phase transition, including logarithmic corrections. The Ginzburg regime between $T_c$ and $T_{rm G}$ occupies a sizable part of the phase diagram.
We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi$_3$. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pres sure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Neel temperature. At $unit{23.6}{kbar}$, the ordered magnetic moments are fully suppressed via a second-order phase transition, and $T_{rm{N}}$ is zero. Thus, we directly observed the quantum critical point at $unit{23.6}{kbar}$ hidden inside the superconducting phase of CeRhSi$_3$.
Two-dimensional Dirac fermions are subjected to two types of interactions, namely the long-range Coulomb interaction and the short-range on-site interaction. The former induces excitonic pairing if its strength $alpha$ is larger than some critical va lue $alpha_c$, whereas the latter drives an antiferromagnetic Mott transition when its strength $U$ exceeds a threshold $U_c$. Here, we study the impacts of the interplay of these two interactions on excitonic pairing with the Dyson-Schwinger equation approach. We find that the critical value $alpha_c$ is increased by weak short-range interaction. As $U$ increases to approach $U_c$, the quantum fluctuation of antiferromagnetic order parameter becomes important and interacts with the Dirac fermions via the Yukawa coupling. After treating the Coulomb interaction and Yukawa coupling interaction on an equal footing, we show that $alpha_c$ is substantially increased as $U rightarrow U_c$. Thus, the excitonic pairing is strongly suppressed near the antiferromagnetic quantum critical point. We obtain a global phase diagram on the $U$-$alpha$ plane, and illustrate that the excitonic insulating and antiferromagnetic phases are separated by an intermediate semimetal phase. These results provide a possible explanation of the discrepancy between recent theoretical progress on excitonic gap generation and existing experiments in suspended graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا