ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of the quantum critical point in heavy fermion CeRhSi$_3$

77   0   0.0 ( 0 )
 نشر من قبل Nikola Egetenmeyer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi$_3$. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Neel temperature. At $unit{23.6}{kbar}$, the ordered magnetic moments are fully suppressed via a second-order phase transition, and $T_{rm{N}}$ is zero. Thus, we directly observed the quantum critical point at $unit{23.6}{kbar}$ hidden inside the superconducting phase of CeRhSi$_3$.

قيم البحث

اقرأ أيضاً

A quantum critical point (QCP) of the heavy fermion Ce(Ru_{1-x}Rh_x)_2Si_2 (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k_3 = 0.35 c ^*, we have shown that the energy width Gamma(k_3), i.e., inverse correlation time, depends on temperature as Gamma(k_3) = c_1 + c_2 T^{3/2 +- 0.1}, where c_1 and c_2 are x dependent constants, in a low temperature range. This critical exponent 3/2 +- 0.1 proves that the QCP is controlled by that of the itinerant antiferromagnet.
We report detailed very low temperature resistivity measurements on the heavy fermion compounds Ce_{1-x}La_{x}CoIn5 (x=0 and x=0.01), with current applied in two crystallographic directions [100] (basal plane) and [001] (perpendicular to the basal pl ane) under magnetic field applied in the [001] or [011] direction. We found a Fermi liquid (rho propto T^{2}) ground state, in all cases, for fields above the superconducting upper critical field. We discuss the possible location of a field induced quantum critical point with respect to Hc2(0), and compare our measurements with the previous reports in order to give a clear picture of the experimental status on this long debated issue.
110 - Alba Theumann , B. Coqblin 2004
The Kondo-Spin Glass competition is studied in a theoretical model of a Kondo lattice with an intra-site Kondo type exchange interaction treated within the mean field approximation, an inter-site quantum Ising exchange interaction with random couplin gs among localized spins and an additional transverse field in the x direction, which represents a simple quantum mechanism of spin flipping. We obtain two second order transition lines from the spin-glass state to the paramagnetic one and then to the Kondo state. For a reasonable set of the different parameters, the two second order transition lines do not intersect and end in two distinct QCP.
71 - H. Kotegawa , M. Matsuda , F. Ye 2020
Antiferromagnet Mn$_3$P with Neel temperature $T_N=30$ K is composed of Mn-tetrahedrons and zigzag chains formed by three inequivalent Mn sites. Due to the nearly frustrated lattice with many short Mn-Mn bonds, competition of the exchange interaction s is expected. We here investigate the magnetic structure and physical properties including pressure effect in single crystals of this material, and reveal a complex yet well-ordered helimagnetic structure. The itinerant character of this materials is strong, and the ordered state with small magnetic moments is easily suppressed under pressure, exhibiting a quantum critical point at $sim1.6$ GPa. The remarkable mass renormalization, even in the ordered state, and an incoherent-coherent crossover in the low-temperature region, characterize an unusual electronic state in Mn$_3$P, which is most likely effected by the underlying frustration effect.
81 - Q. Y. Chen , D. F. Xu , X. H. Niu 2016
Heavy fermion materials gain high electronic masses and expand Fermi surfaces when the high-temperature localized f electrons become itinerant and hybridize with the conduction band at low temperatures. However, despite the common application of this model, direct microscopic verification remains lacking. Here we report high-resolution angle-resolved photoemission spectroscopy measurements on CeCoIn5, a prototypical heavy fermion compound, and reveal the long-sought band hybridization and Fermi surface expansion. Unexpectedly, the localized-to-itinerant transition occurs at surprisingly high temperatures, yet f electrons are still largely localized at the lowest temperature. Moreover, crystal field excitations likely play an important role in the anomalous temperature dependence. Our results paint an comprehensive unanticipated experimental picture of the heavy fermion formation in a periodic multi-level Anderson/Kondo lattice, and set the stage for understanding the emergent properties in related materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا