ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical slave-spin mean-field approach to orbital selective Mott insulators

138   0   0.0 ( 0 )
 نشر من قبل Yashar Komijani
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the slave-spin mean-field approach to study particle-hole symmetric one- and two-band Hubbard models in presence of Hunds coupling interaction. By analytical analysis of Hamiltonian, we show that the locking of the two orbitals vs.,orbital-selective Mott transition can be formulated within a Landau-Ginzburg framework. By applying the slave-spin mean-field to impurity problem, we are able to make a correspondence between impurity and lattice. We also consider the stability of the orbital selective Mott phase to the hybridization between the orbitals and study the limitations of the slave-spin method for treating inter-orbital tunnellings in the case of multi-orbital Bethe lattices with particle-hole symmetry.

قيم البحث

اقرأ أيضاً

We present a comprehensive study of the spin excitations - as measured by the dynamical spin structure factor $S(q,omega)$ - of the so-called block-magnetic state of low-dimensional orbital-selective Mott insulators. We realize this state via both a multi-orbital Hubbard model and a generalized Kondo-Heisenberg Hamiltonian. Due to various competing energy scales present in the models, the system develops periodic ferromagnetic islands of various shapes and sizes, which are antiferromagnetically coupled. The 2$times$2 particular case was already found experimentally in the ladder material BaFe$_2$Se$_3$ that becomes superconducting under pressure. Here we discuss the electronic density as well as Hubbard and Hund coupling dependence of $S(q,omega)$ using density matrix renormalization group method. Several interesting features were identified: (1) An acoustic (dispersive spin-wave) mode develops. (2) The spin-wave bandwidth establishes a new energy scale that is strongly dependent on the size of the magnetic island and becomes abnormally small for large clusters. (3) Optical (dispersionless spin excitation) modes are present for all block states studied here. In addition, a variety of phenomenological spin Hamiltonians have been investigated but none matches entirely our results that were obtained primarily at intermediate Hubbard $U$ strengths. Our comprehensive analysis provides theoretical guidance and motivation to crystal growers to search for appropriate candidate materials to realize the block states, and to neutron scattering experimentalists to confirm the exotic dynamical magnetic properties unveiled here, with a rich mixture of acoustic and optical features.
We study the effect of a magnetic field on the low energy description of Mott insulators with strong spin-orbit (SO) coupling. In contrast to the standard case of the Hubbard model without SO coupling, we show that Peierls phases can modulate the mag netic exchange at leading order in the interaction. Our mechanism crucially depends on the existence of distinct exchange paths between neighboring magnetic ions enclosing a well-defined area. Thus it will generically be present in any solid state realisation of the Kitaev model and its extensions. We explicitly calculate the variation of the exchange constants of the so-called $JKGamma$ model as a function of the magnetic flux. We discuss experimental implications of our findings for various settings of candidate Kitaev spin liquids.
Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one dimension revealed the existence of an orbital-selective Mott phase (OSMP) with block spin order. Recent inelastic neutron scattering (INS) experiments on the BaFe$_2$Se$_3$ ladder compound confirmed the relevance of the block-OSMP. Moreover, the powder INS spectrum reveled an unexpected structure, containing both low-energy acoustic and high-energy optical modes. Here we present the theoretical prediction for the dynamical spin structure factor within a block-OSMP regime using the density-matrix renormalization group method. In agreement with experiments we find two dominant features: low-energy dispersive and high-energy dispersionless modes. We argue that the former represents the spin-wave-like dynamics of the block ferromagnetic islands, while the latter is attributed to a novel type of local on-site spin excitations controlled by the Hund coupling.
287 - Yuekun Niu , Jian Sun , Yu Ni 2019
The dynamical mean-field theory is employed to study the orbital-selective Mott transition (OSMT) of the two-orbital Hubbard model with nearest neighbor hopping and next-nearest neighbor (NNN) hopping. The NNN hopping breaks the particle-hole symmetr y at half filling and gives rise to an asymmetric density of states (DOS). Our calculations show that the broken symmetry of DOS benefits the OSMT, where the region of the orbital-selective Mott phase significantly extends with the increasing NNN hopping integral. We also find that Hunds rule coupling promotes OSMT by blocking the orbital fluctuations, but the influence of NNN hopping is more remarkable.
Motivated by experimental and theoretical interest in realizing multipolar orders in $d$-orbital materials, we discuss the quantum magnetism of $J!=!2$ ions which can be realized in spin-orbit coupled oxides with $5d^2$ transition metal ions. Based o n the crystal field environment, we argue for a splitting of the $J!=!2$ multiplet, leading to a low lying non-Kramers doublet which hosts quadrupolar and octupolar moments. We discuss a microscopic mechanism whereby the combined perturbative effects of orbital repulsion and antiferromagnetic Heisenberg spin interactions leads to ferro-octupolar coupling between neighboring sites, and stabilizes ferro-octupolar order for a face-centered cubic lattice. This same mechanism is also shown to disfavor quadrupolar ordering. We show that studying crystal field levels via Raman scattering in a magnetic field provides a probe of octupolar order. We study spin dynamics in the ferro-octupolar state using a slave-boson approach, uncovering a gapped and dispersive magnetic exciton. For sufficiently strong magnetic exchange, the dispersive exciton can condense, leading to conventional type-I antiferromagnetic (AFM) order which can preempt octupolar order. Our proposal for ferrooctupolar order, with specific results in the context of a model Hamiltonian, provides a comprehensive understanding of thermodynamics, $mu$SR, X-ray diffraction, and inelastic neutron scattering measurements on a range of cubic $5d^2$ double perovskite materials including Ba$_2$ZnOsO$_6$, Ba$_2$CaOsO$_6$, and Ba$_2$MgOsO$_6$. Our proposal for exciton condensation leading to type-I AFM order may be relevant to materials such as Sr$_2$MgOsO$_6$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا