ترغب بنشر مسار تعليمي؟ اضغط هنا

Block orbital-selective Mott insulators: a spin excitation analysis

254   0   0.0 ( 0 )
 نشر من قبل Jacek Herbrych
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive study of the spin excitations - as measured by the dynamical spin structure factor $S(q,omega)$ - of the so-called block-magnetic state of low-dimensional orbital-selective Mott insulators. We realize this state via both a multi-orbital Hubbard model and a generalized Kondo-Heisenberg Hamiltonian. Due to various competing energy scales present in the models, the system develops periodic ferromagnetic islands of various shapes and sizes, which are antiferromagnetically coupled. The 2$times$2 particular case was already found experimentally in the ladder material BaFe$_2$Se$_3$ that becomes superconducting under pressure. Here we discuss the electronic density as well as Hubbard and Hund coupling dependence of $S(q,omega)$ using density matrix renormalization group method. Several interesting features were identified: (1) An acoustic (dispersive spin-wave) mode develops. (2) The spin-wave bandwidth establishes a new energy scale that is strongly dependent on the size of the magnetic island and becomes abnormally small for large clusters. (3) Optical (dispersionless spin excitation) modes are present for all block states studied here. In addition, a variety of phenomenological spin Hamiltonians have been investigated but none matches entirely our results that were obtained primarily at intermediate Hubbard $U$ strengths. Our comprehensive analysis provides theoretical guidance and motivation to crystal growers to search for appropriate candidate materials to realize the block states, and to neutron scattering experimentalists to confirm the exotic dynamical magnetic properties unveiled here, with a rich mixture of acoustic and optical features.



قيم البحث

اقرأ أيضاً

Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one dimension revealed the existence of an orbital-selective Mott phase (OSMP) with block spin order. Recent inelastic neutron scattering (INS) experiments on the BaFe$_2$Se$_3$ ladder compound confirmed the relevance of the block-OSMP. Moreover, the powder INS spectrum reveled an unexpected structure, containing both low-energy acoustic and high-energy optical modes. Here we present the theoretical prediction for the dynamical spin structure factor within a block-OSMP regime using the density-matrix renormalization group method. In agreement with experiments we find two dominant features: low-energy dispersive and high-energy dispersionless modes. We argue that the former represents the spin-wave-like dynamics of the block ferromagnetic islands, while the latter is attributed to a novel type of local on-site spin excitations controlled by the Hund coupling.
We use the slave-spin mean-field approach to study particle-hole symmetric one- and two-band Hubbard models in presence of Hunds coupling interaction. By analytical analysis of Hamiltonian, we show that the locking of the two orbitals vs.,orbital-sel ective Mott transition can be formulated within a Landau-Ginzburg framework. By applying the slave-spin mean-field to impurity problem, we are able to make a correspondence between impurity and lattice. We also consider the stability of the orbital selective Mott phase to the hybridization between the orbitals and study the limitations of the slave-spin method for treating inter-orbital tunnellings in the case of multi-orbital Bethe lattices with particle-hole symmetry.
Motivated by experimental and theoretical interest in realizing multipolar orders in $d$-orbital materials, we discuss the quantum magnetism of $J!=!2$ ions which can be realized in spin-orbit coupled oxides with $5d^2$ transition metal ions. Based o n the crystal field environment, we argue for a splitting of the $J!=!2$ multiplet, leading to a low lying non-Kramers doublet which hosts quadrupolar and octupolar moments. We discuss a microscopic mechanism whereby the combined perturbative effects of orbital repulsion and antiferromagnetic Heisenberg spin interactions leads to ferro-octupolar coupling between neighboring sites, and stabilizes ferro-octupolar order for a face-centered cubic lattice. This same mechanism is also shown to disfavor quadrupolar ordering. We show that studying crystal field levels via Raman scattering in a magnetic field provides a probe of octupolar order. We study spin dynamics in the ferro-octupolar state using a slave-boson approach, uncovering a gapped and dispersive magnetic exciton. For sufficiently strong magnetic exchange, the dispersive exciton can condense, leading to conventional type-I antiferromagnetic (AFM) order which can preempt octupolar order. Our proposal for ferrooctupolar order, with specific results in the context of a model Hamiltonian, provides a comprehensive understanding of thermodynamics, $mu$SR, X-ray diffraction, and inelastic neutron scattering measurements on a range of cubic $5d^2$ double perovskite materials including Ba$_2$ZnOsO$_6$, Ba$_2$CaOsO$_6$, and Ba$_2$MgOsO$_6$. Our proposal for exciton condensation leading to type-I AFM order may be relevant to materials such as Sr$_2$MgOsO$_6$.
213 - Giniyat Khaliullin 2005
Basic mechanisms controlling orbital order and orbital fluctuations in transition metal oxides are discussed. The lattice driven classical orbital picture, e.g. like in manganites LaMnO$_3$, is contrasted to the quantum behavior of orbitals in frustr ated superexchange models as realised in pseudocubic titanites ATiO$_3$ and vanadates AVO$_3$. In YVO$_3$, the lattice and superexchange effects strongly compete -- this explains the extreme sensitivity of magnetic states to temperature and doping. Lifting the $t_{2g}$ orbital degeneracy by a relativistic spin-orbital coupling is considered on example of the layered cobaltates. We find that the spin-orbital mixing of low-energy states leads to unusual magnetic correlations in a triangular lattice of the CoO$_2$ parent compound. Finally, the magnetism of sodium-rich compounds Na$_{1-x}$CoO$_2$ is discussed in terms of a spin/orbital polaronic liquid.
Topological phases of matter are among the most intriguing research directions in Condensed Matter Physics. It is known that superconductivity induced on a topological insulators surface can lead to exotic Majorana modes, the main ingredient of many proposed quantum computation schemes. In this context, the iron-based high critical temperature superconductors are a promising platform to host such an exotic phenomenon in real condensed-matter compounds. The Coulomb interaction is commonly believed to be vital for the magnetic and superconducting properties of these systems. This work bridges these two perspectives and shows that the Coulomb interaction can also drive a canonical superconductor with orbital degrees of freedom into the topological state. Namely, we show that above a critical value of the Hubbard interaction the system simultaneously develops spiral spin order, a highly unusual triplet amplitude in superconductivity, and, remarkably, Majorana fermions at the edges of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا