ترغب بنشر مسار تعليمي؟ اضغط هنا

Survey of Visual Question Answering: Datasets and Techniques

90   0   0.0 ( 0 )
 نشر من قبل Akshay Gupta
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual question answering (or VQA) is a new and exciting problem that combines natural language processing and computer vision techniques. We present a survey of the various datasets and models that have been used to tackle this task. The first part of the survey details the various datasets for VQA and compares them along some common factors. The second part of this survey details the different approaches for VQA, classified into four types: non-deep learning models, deep learning models without attention, deep learning models with attention, and other models which do not fit into the first three. Finally, we compare the performances of these approaches and provide some directions for future work.



قيم البحث

اقرأ أيضاً

Image description task has been invariably examined in a static manner with qualitative presumptions held to be universally applicable, regardless of the scope or target of the description. In practice, however, different viewers may pay attention to different aspects of the image, and yield different descriptions or interpretations under various contexts. Such diversity in perspectives is difficult to derive with conventional image description techniques. In this paper, we propose a customized image narrative generation task, in which the users are interactively engaged in the generation process by providing answers to the questions. We further attempt to learn the users interest via repeating such interactive stages, and to automatically reflect the interest in descriptions for new images. Experimental results demonstrate that our model can generate a variety of descriptions from single image that cover a wider range of topics than conventional models, while being customizable to the target user of interaction.
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph struc tures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
Question answering (QA) systems provide a way of querying the information available in various formats including, but not limited to, unstructured and structured data in natural languages. It constitutes a considerable part of conversational artifici al intelligence (AI) which has led to the introduction of a special research topic on Conversational Question Answering (CQA), wherein a system is required to understand the given context and then engages in multi-turn QA to satisfy the users information needs. Whilst the focus of most of the existing research work is subjected to single-turn QA, the field of multi-turn QA has recently grasped attention and prominence owing to the availability of large-scale, multi-turn QA datasets and the development of pre-trained language models. With a good amount of models and research papers adding to the literature every year recently, there is a dire need of arranging and presenting the related work in a unified manner to streamline future research. This survey, therefore, is an effort to present a comprehensive review of the state-of-the-art research trends of CQA primarily based on reviewed papers from 2016-2021. Our findings show that there has been a trend shift from single-turn to multi-turn QA which empowers the field of Conversational AI from different perspectives. This survey is intended to provide an epitome for the research community with the hope of laying a strong foundation for the field of CQA.
The predominant approach to visual question answering (VQA) relies on encoding the image and question with a black-box neural encoder and decoding a single token as the answer like yes or no. Despite this approachs strong quantitative results, it str uggles to come up with intuitive, human-readable forms of justification for the prediction process. To address this insufficiency, we reformulate VQA as a full answer generation task, which requires the model to justify its predictions in natural language. We propose LRTA [Look, Read, Think, Answer], a transparent neural-symbolic reasoning framework for visual question answering that solves the problem step-by-step like humans and provides human-readable form of justification at each step. Specifically, LRTA learns to first convert an image into a scene graph and parse a question into multiple reasoning instructions. It then executes the reasoning instructions one at a time by traversing the scene graph using a recurrent neural-symbolic execution module. Finally, it generates a full answer to the given question with natural language justifications. Our experiments on GQA dataset show that LRTA outperforms the state-of-the-art model by a large margin (43.1% v.s. 28.0%) on the full answer generation task. We also create a perturbed GQA test set by removing linguistic cues (attributes and relations) in the questions for analyzing whether a model is having a smart guess with superficial data correlations. We show that LRTA makes a step towards truly understanding the question while the state-of-the-art model tends to learn superficial correlations from the training data.
Active learning promises to alleviate the massive data needs of supervised machine learning: it has successfully improved sample efficiency by an order of magnitude on traditional tasks like topic classification and object recognition. However, we un cover a striking contrast to this promise: across 5 models and 4 datasets on the task of visual question answering, a wide variety of active learning approaches fail to outperform random selection. To understand this discrepancy, we profile 8 active learning methods on a per-example basis, and identify the problem as collective outliers -- groups of examples that active learning methods prefer to acquire but models fail to learn (e.g., questions that ask about text in images or require external knowledge). Through systematic ablation experiments and qualitative visualizations, we verify that collective outliers are a general phenomenon responsible for degrading pool-based active learning. Notably, we show that active learning sample efficiency increases significantly as the number of collective outliers in the active learning pool decreases. We conclude with a discussion and prescriptive recommendations for mitigating the effects of these outliers in future work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا