ترغب بنشر مسار تعليمي؟ اضغط هنا

Activity induced first order transition for the current in a disordered medium

60   0   0.0 ( 0 )
 نشر من قبل Christian Maes
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that particles can get trapped by randomly placed obstacles when they are pushed too much. We present a model where the current in a disordered medium dies at a large external field, but is reborn when the activity is increased. By activity we mean the time-variation of the external driving at a constant time-averaged field. A different interpretation of the resurgence of the current is that the particles are capable of taking an infinite sequence of potential barriers via a mechanism similar to stochastic resonance. We add a discussion regarding the role of shaking in processes of relaxation.

قيم البحث

اقرأ أيضاً

We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first-order in the presence of quenched disorder (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near to the pure-system limit and is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.
In a recent paper, Clusel and Fortin [J. Phys. A.: Math. Gen. 39 (2006) 995] presented an analytical study of a first-order transition induced by an inhomogeneous boundary magnetic field in the two-dimensional Ising model. They identified the transit ion that separates the regime where the interface is localized near the boundary from the one where it is propagating inside the bulk. Inspired by these results, we measured the interface tension by using multimagnetic simulations combined with parallel tempering to determine the phase transition and the location of the interface. Our results are in very good agreement with the theoretical predictions. Furthermore, we studied the spin-spin correlation function for which no analytical results are available.
Dark states are stationary states of a dissipative, Lindblad-type time evolution with zero von Neumann entropy, therefore representing examples of pure, steady quantum states. Non-equilibrium dynamics featuring a dark state recently gained a lot of a ttraction since their implementation in the context of driven-open quantum systems represents a viable possibility to engineer unique, pure states. In this work, we analyze a driven many-body spin system, which undergoes a transition from a dark steady state to a mixed steady state as a function of the driving strength. This transition connects a zero entropy (dark) state with a finite entropy (mixed) state and thus goes beyond the realm of equilibrium statistical mechanics and becomes of genuine nonequilibrium character. We analyze the relevant long wavelength fluctuations driving this transition in a regime where the system performs a discontinuous jump from a dark to a mixed state by means of the renormalization group. This allows us to approach the nonequilibrium dark state transition and identify similarities and clear differences to common, equilibrium phase transitions, and to establish the phenomenology for a first order dark state phase transition.
Using large-scale numerical simulations we studied the kinetics of the 2d q-Potts model for q > 4 after a shallow subcritical quench from a high-temperature homogeneous configuration. This protocol drives the system across a first-order phase transit ion. The initial state is metastable after the quench and, for final temperatures close to the critical one, the system escapes from it via a multi-nucleation process. The ensuing relaxation towards equilibrium proceeds through coarsening with competition between the equivalent ground states. This process has been analyzed for different choices of the parameters such as the number of states and the final quench temperature.
We study the probability distribution $P(X_N=X,N)$ of the total displacement $X_N$ of an $N$-step run and tumble particle on a line, in presence of a constant nonzero drive $E$. While the central limit theorem predicts a standard Gaussian form for $P (X,N)$ near its peak, we show that for large positive and negative $X$, the distribution exhibits anomalous large deviation forms. For large positive $X$, the associated rate function is nonanalytic at a critical value of the scaled distance from the peak where its first derivative is discontinuous. This signals a first-order dynamical phase transition from a homogeneous `fluid phase to a `condensed phase that is dominated by a single large run. A similar first-order transition occurs for negative large fluctuations as well. Numerical simulations are in excellent agreement with our analytical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا