ترغب بنشر مسار تعليمي؟ اضغط هنا

Emerging dynamics arising from coarse-grained quantum systems

57   0   0.0 ( 0 )
 نشر من قبل Fernando de Melo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The purpose of physics is to describe nature from elementary particles all the way up to cosmological objects like cluster of galaxies and black holes. Although a unified description for all this spectrum of events is desirable, this would be highly impractical. To not get lost in unnecessary details, effective descriptions are mandatory. Here we analyze the dynamics that may emerge from a full quantum description when one does not have access to all the degrees of freedom of a system. More concretely, we describe the properties of the dynamics that arise from quantum mechanics if one has access only to a coarse-grained description of the system. We obtain that the effective maps are not necessarily of Kraus form, due to correlations between accessible and nonaccessible degrees of freedom, and that the distance between two effective states may increase under the action of the effective map. We expect our framework to be useful for addressing questions such as the thermalization of closed quantum systems, as well as the description of measurements in quantum mechanics.



قيم البحث

اقرأ أيضاً

We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, e ven those that do not commute with each other, without losing any of its properties. It is well-defined out of equilibrium, and for some coarse-grainings it generically rises to the correct thermodynamic value even in a genuinely isolated quantum system. The quantity contains several other entropy definitions as special cases, it has interesting information-theoretic interpretations, and mathematical properties -- such as extensivity and upper and lower bounds -- suitable for an entropy. Here we describe and provide proofs for many of its properties, discuss its interpretation and connection to other quantities, and provide numerous simulations and analytic arguments supporting the claims of its relationship to thermodynamic entropy. This quantity may thus provide a clear and well-defined foundation on which to build a satisfactory understanding of the second thermodynamical law in quantum mechanics.
One can think of some physical evolutions as being the emergent-effective result of a microscopic discrete model. Inspired by classical coarse-graining procedures, we provide a simple procedure to coarse-grain color-blind quantum cellular automata th at follow Goldilocks rules. The procedure consists in (i) space-time grouping the quantum cellular automaton (QCA) in cells of size $N$; (ii) projecting the states of a cell onto its borders, connecting them with the fine dynamics; (iii) describing the overall dynamics by the border states, that we call signals; and (iv) constructing the coarse-grained dynamics for different sizes $N$ of the cells. A byproduct of this simple toy-model is a general discrete analog of the Stokes law. Moreover we prove that in the spacetime limit, the automaton converges to a Dirac free Hamiltonian. The QCA we introduce here can be implemented by present-day quantum platforms, such as Rydberg arrays, trapped ions, and superconducting qbits. We hope our study can pave the way to a richer understanding of those systems with limited resolution.
We extend classical coarse-grained entropy, commonly used in many branches of physics, to the quantum realm. We find two coarse-grainings, one using measurements of local particle numbers and then total energy, and the second using local energy measu rements, which lead to an entropy that is defined outside of equilibrium, is in accord with the thermodynamic entropy for equilibrium systems, and reaches the thermodynamic entropy in the long-time limit, even in genuinely isolated quantum systems. This answers the long-standing conceptual problem, as to which entropy is relevant for the formulation of the second thermodynamic law in closed quantum systems. This entropy could be in principle measured, especially now that experiments on such systems are becoming feasible.
Precise thermometry for quantum systems is important to the development of new technology, and understanding the ultimate limits to precision presents a fundamental challenge. It is well known that optimal thermometry requires projective measurements of the total energy of the sample. However, this is infeasible in even moderately-sized systems, where realistic energy measurements will necessarily involve some coarse graining. Here, we explore the precision limits for temperature estimation when only coarse-grained measurements are available. Utilizing tools from signal processing, we derive the structure of optimal coarse-grained measurements and find that good temperature estimates can generally be attained even with a small number of outcomes. We apply our results to many-body systems and nonequilibrium thermometry. For the former, we focus on interacting spin lattices, both at and away from criticality, and find that the Fisher-information scaling with system size is unchanged after coarse-graining. For the latter, we consider a probe of given dimension interacting with the sample, followed by a measurement of the probe. We derive an upper bound on arbitrary, nonequilibrium strategies for such probe-based thermometry and illustrate it for thermometry on a Bose-Einstein condensate using an atomic quantum-dot probe.
109 - R. Tsekov 2015
It is demonstrated how quantum mechanics emerges from the stochastic dynamics of force-carriers. It is shown that the quantum Moyal equation corresponds to some dynamic correlations between the momentum of a real particle and the position of a virtua l particle, which are not present in classical mechanics. The new concept throws light on the physical meaning of quantum theory, showing that the Planck constant square is a second-second cross-cumulant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا