ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical probing of the intrinsic spin Hall effect in a high mobility GaAs p-doped quantum well

92   0   0.0 ( 0 )
 نشر من قبل Adrian Maier
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the detection of the intrinsic spin Hall effect in a modulation doped Al-GaAs/GaAs/AlGaAs heterostructure bounded by a self-aligned pn-junction, fabricated by the cleaved edge overgrowth method. Light emission due to the recombination of electrons and spin-polarized holes was generated and mapped with a spatial resolution of one micrometer. An edge accumulated spin polarization of up to 11% was measured, induced solely by application of an electric Field perpendicular to the pn-junction. Using a quantum dot structure as light source, a linear dependence of the effective spin polarization, and with that the dominance of the spin Hall effect, with the electric field is seen. Spatially resolved spectroscopy from an epitaxially fabricated LED is demonstrated to be a valuable tool to probe the edge states of electron and hole gases in reduced dimensions.



قيم البحث

اقرأ أيضاً

The two-dimensional electron system in an InAs quantum well has emerged as a prime candidate for hosting exotic quasi-particles with non-Abelian statistics such as Majorana fermions and parafermions. To attain its full promise, however, the electron system has to be clean enough to exhibit electron-electron interaction phenomena. Here we report the observation of fractional quantum Hall effect in a very low disorder InAs quantum well with a well-width of 24 nm, containing a two-dimensional electron system with a density $n=7.8 times 10^{11}$ cm$^{-2}$ and low-temperature mobility $1.8 times 10^6$ cm$^2$/Vs. At a temperature of $simeq35$ mK and $Bsimeq24$ T, we observe a deep minimum in the longitudinal resistance, accompanied by a nearly quantized Hall plateau at Landau level filling factor $ u=4/3$.
The layers of a high-temperature novel GaAs:Fe diluted magnetic semiconductor (DMS) with an average Fe content up to 20 at. % were grown on (001) i-GaAs substrates using a pulsed laser deposition in a vacuum. The transmission electron microscopy (TEM ) and energy-dispersive X-ray spectroscopy investigations revealed that the conductive layers obtained at 180 and 200 C are epitaxial, do not contain any second-phase inclusions, but contain the Fe-enriched columnar regions of overlapped microtwins. The TEM investigations of the non-conductive layer obtained at 250 C revealed the embedded coherent Fe-rich clusters of GaAs:Fe DMS. The X-ray photoelectron spectroscopy investigations showed that Fe atoms form chemical bonds with Ga and As atoms with almost equal probability and thus the comparable number of Fe atoms substitute on Ga and As sites. The n-type conductivity of the obtained conductive GaAs:Fe layers is apparently associated with electron transport in a Fe acceptor impurity band within the GaAs band gap. A hysteretic negative magnetoresistance was observed in the conductive layers up to room temperature. Magnetoresistance measurements point to the out-of-plane magnetic anisotropy of the conductive GaAs:Fe layers related to the presence of the columnar regions. The studies of the magnetic circular dichroism confirm that the layers obtained at 180, 200 and 250 C are intrinsic ferromagnetic semiconductors and the Curie point can reach up to at least room temperature in case of the conductive layer obtained at 200 C. It was suggested that in heavily Fe-doped GaAs layers the ferromagnetism is related to the Zener double exchange between Fe atoms with different valence states via an intermediate As and Ga atom.
202 - G.Y. Guo , Yugui Yao , 2005
Relativistic band theoretical calculations reveal that intrinsic spin Hall conductivity in hole-doped archetypical semiconductors Ge, GaAs and AlAs is large $[sim 100 (hbar/e)(Omega cm)^{-1}]$, showing the possibility of spin Hall effect beyond the f our band Luttinger Hamiltonian. The calculated orbital-angular-momentum (orbital) Hall conductivity is one order of magnitude smaller, indicating no cancellation between the spin and orbital Hall effects in bulk semiconductors. Furthermore, it is found that the spin Hall effect can be strongly manipulated by strains, and that the $ac$ spin Hall conductivity in the semiconductors is large in pure as well as doped semiconductors.
Previously, it has been shown that rapid cooling of yttrium-iron-garnet/platinum (Pt) nano structures, preheated by an electric current sent through the Pt layer leads to overpopulation of a magnon gas and to subsequent formation of a Bose-Einstein c ondensate (BEC) of magnons. The spin Hall effect (SHE), which creates a spin-polarized current in the Pt layer, can inject or annihilate magnons depending on the electric current and applied field orientations. Here we demonstrate that the injection or annihilation of magnons via the SHE can prevent or promote the formation of a rapid cooling induced magnon BEC. Depending on the current polarity, a change in the BEC threshold of -8% and +6% was detected. These findings demonstrate a new method to control macroscopic quantum states, paving the way for their application in spintronic devices.
We propose an optical counterpart of the quantum spin Hall (QSH) effect in a two-dimensional photonic crystal composed of a gyrotropic medium exhibiting both gyroelectric and gyromagnetic properties simultaneously. Such QSH effect shows unidirectiona l polarization-dependent transportation of photonic topological edged states, which is robust against certain disorders and impurities. More importantly, we find that such unique property is not protected by conventional time-reversal symmetry of photons obeying the Bosonic statistics but rather by the same symmetry, as electrons time-reversal symmetry. Based on the tight-binding approximation approach, we construct an effective Hamiltonian for this photonic structure, which is shown to have a similar form to that of an electronic QSH system. Furthermore, the invariant of such model is calculated in order to unify its topological non-trivial character. Our finding provides a viable way to exploit the optical topological property, and also can be leveraged to develop a photonic platform to mimic the spin properties of electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا