ﻻ يوجد ملخص باللغة العربية
Over the last years a lot of theoretical and experimental efforts have been made to find states with broken time reversal symmetry (BTRS) in multi-band superconductors. In particular, it was theoretically proposed that in the Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ system either an $s+is$ or an $s+id$ BTRS state may exist at high doping levels in a narrow region of the phase diagram. Here we report the observation of an enhanced zero field muon spin relaxation rate below the superconducting transition temperature for a high quality crystalline sample with $x approx$ 0.73. This indicates that indeed the time reversal symmetry is broken in superconducting Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ at this doping level.
Discoveries of ordered quantum states of matter are of great fundamental interest, and often lead to unique applications. The most well known example -- superconductivity -- is caused by the formation and condensation of pairs of electrons. A key pro
The noncentrosymmetric superconductor Re$_6$Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re$_6$Zr single c
The temperature dependent resistivity of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ (x = 0.23, 0.25, 0.28 and 0.4) single crystals and the angle dependent resistivity of superconducting Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ single crystals were measured in magnetic field
A single crystal of isovalently substituted Ba(Fe$_{1-x}$Ru$_{x}$)$_2$As$_2$ ($x=0.24$) was sequentially irradiated with 2.5 MeV electrons up to a maximum dose of $2.1 times 10^{19}$ electrons/cm^2. The electrical resistivity was measured textit{in -
We report a detailed investigation on the lower critical field $H_{c1}$ of the superconducting Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ (FeAs-122) single crystals. A pronounced kink is observed on the $H_{c1}(T)$ curve, which is attributed to the existence of