ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Two Gaps and Breakdown of the Uemura Plot in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ Single Crystals

453   0   0.0 ( 0 )
 نشر من قبل Cong Ren
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a detailed investigation on the lower critical field $H_{c1}$ of the superconducting Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ (FeAs-122) single crystals. A pronounced kink is observed on the $H_{c1}(T)$ curve, which is attributed to the existence of two superconducting gaps. By fitting the data $H_{c1}(T)$ to the two-gap BCS model in full temperature region, a small gap of $Delta_a(0)=2.0pm 0.3$ meV and a large gap of $Delta_b(0)=8.9pm 0.4$ meV are obtained. The in-plane penetration depth $lambda_{ab}(0)$ is estimated to be 105 nm corresponding to a rather large superfluid density, which points to the breakdown of the Uemura plot in FeAs-122 superconductors.

قيم البحث

اقرأ أيضاً

386 - G. F. Chen , Z. Li , J. Dong 2008
We have successfully grown high quality single crystals of SrFe$_2$As$_2$ and A$_{0.6}$K$_{0.4}$Fe$_2$As$_2$(A=Sr, Ba) using flux method. The resistivity, specific heat and Hall coefficient have been measured. For parent compound SrFe$_2$As$_2$, an a nisotropic resistivity with $rho_c$ / $rho_{ab}$ as large as 130 is obtained at low temperatures. A sharp drop in both in-plane and out-plane resistivity due to the SDW instability is observed below 200 K. The angular dependence of in-plane magnetoresistance shows 2-fold symmetry with field rotating within ab plane below SDW transition temperature. This is consistent with a stripe-type spin ordering in SDW state. In K doped A$_{0.6}$K$_{0.4}$Fe$_2$As$_2$(A=Sr. Ba), the SDW instability is suppressed and the superconductivity appears with T$_c$ above 35 K. The rather low anisotropy in upper critical field between H$parallel$ab and H$parallel$c indicates inter-plane coupling play an important role in hole doped Fe-based superconductors.
86 - J.-Q. Yan , S. Nandi , B. Saparov 2014
La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals have been grown out of an NaAs flux in an alumina crucible and characterized by measuring magnetic susceptibility, electrical resistivity, specific heat, as well as single crystal x-ray and neutron dif fraction. La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals show a structural phase transition from a high temperature tetragonal phase to a low-temperature orthorhombic phase at T$_s$,=,125,K. This structural transition is accompanied by an anomaly in the temperature dependence of electrical resistivity, anisotropic magnetic susceptibility, and specific heat. Concomitant with the structural phase transition, the Fe moments order along the emph{a} direction with an ordered moment of 0.7(1),$mu_{textup{B}}$ at emph{T},=,5 K. The low temperature stripe antiferromagnetic structure is the same as that in other emph{A}Fe$_{2}$As$_{2}$ (emph{A},=,Ca, Sr, Ba) compounds. La$_{0.5-x}$Na$_{0.5+x}$Fe$_2$As$_2$ provides a new material platform for the study of iron-based superconductors where the electron-hole asymmetry could be studied by simply varying La/Na ratio.
We report on band-dependent quasiparticle dynamics in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ ($T_c = 37 K$) measured using ultrafast pump-probe spectroscopy. In the superconducting state, we observe two distinct relaxation processes: a fast component whose decay rate increases linearly with excitation density and a slow component with an excitation density independent decay rate. We argue that these two components reflect the recombination of quasiparticles in the two hole bands through intraband and interband processes. We also find that the thermal recombination rate of quasiparticles increases quadratically with temperature. The temperature and excitation density dependence of the decays indicates fully gapped hole bands and nodal or very anisotropic electron bands.
113 - L. Chen , T. T. Han , C. Cai 2021
Pairing symmetry which characterizes the superconducting pairing mechanism is normally determined by measuring the superconducting gap structure ($|Delta_k|$). Here, we report the measurement of a strain-induced gap modulation ($partial|Delta_k|$) in uniaxially strained Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ utilizing angle-resolved photoemission spectroscopy and $in$-$situ$ strain-tuning. We found that the uniaxial strain drives Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ into a nematic superconducting state which breaks the four-fold rotational symmetry of the superconducting pairing. The superconducting gap increases on the $d_{yz}$ electron and hole pockets while it decreases on the $d_{xz}$ counterparts. Such orbital selectivity indicates that orbital-selective pairing exists intrinsically in non-nematic iron-based superconductors. The $d_{xz}$ and $d_{yz}$ pairing channels are balanced originally in the pristine superconducting state, but become imbalanced under uniaxial strain. Our results highlight the important role of intra-orbital scattering in mediating the superconducting pairing in iron-based superconductors. It also highlights the measurement of $partial|Delta_k|$ as an effective way to characterize the superconducting pairing from a perturbation perspective.
Superfluid density ($n_s$) in the mixed state of an iron pnictide superconductor Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ is determined by muon spin rotation for a sample with optimal doping ($x=0.4$). The temperature dependence of $n_s$ is perfectly reproduc ed by the conventional BCS model for s-wave paring, where the order parameter can be either a single-gap with $Delta=8.35(6)$ meV [$2Delta/k_BT_c=5.09(4)$], or double-gap structure with $Delta_1=12$ meV (fixed) [$2Delta_1/k_BT_c=7.3$] and $Delta_2=6.8(3)$ meV [$2Delta_2/k_BT_c=4.1(2)$]. The latter is consistent with the recent result of angle-resolved photo-emssion spectroscopy. The large gap parameters ($2Delta/k_BT_c$) indicate extremely strong coupling of carriers to bosons that mediate the Cooper pairing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا