ﻻ يوجد ملخص باللغة العربية
Usually, interpretation of redshift in static spacetimes (for example, near black holes) is opposed to that in cosmology. In this methodological note we show that both explanations are unified in a natural picture. This is achieved if considering the static spacetime one (i) makes a transition to a synchronous frame, (ii) returns to the original frame by means of local Lorentz boost. To reach our goal, we consider a rather general class of spherically symmetric spacetimes. In doing so, we construct frames that generalize the well-known Lemaitre and Painlev{e}--Gullstand ones and elucidate the relation between them. This helps to understanding in an unifying approach, how gravitation reveals itself in different branches of general relativity. This can be useful for general relativity university courses.
Previous studies have demonstrated that gravitational radiation reliably encodes information about the natural emission direction of the source (e.g., the orbital plane). In this paper, we demonstrate that these orientations can be efficiently estima
The analysis of gravitino fields in curved spacetimes is usually carried out using the Newman-Penrose formalism. In this paper we consider a more direct approach with eigenspinor-vectors on spheres, to separate out the angular parts of the fields in
We investigate here the behavior of a few spherically symmetric static acclaimed black hole solutions in respect of tidal forces in the geodesic frame. It turns out that the forces diverge on the horizon of cold black holes (CBH) while for ordinary o
In this paper, we derive the solutions of orbit equations for a class of naked singularity spacetimes, and compare these with timelike orbits, that is, particle trajectories in the Schwarzschild black hole spacetime. The Schwarzschild and naked singu
We consider the motion of massive and massless particles in a five-dimensional spacetime with a compactified extra-dimensional space where a black hole is localized, i.e., a caged black hole spacetime. We show the existence of circular orbits and rev