ترغب بنشر مسار تعليمي؟ اضغط هنا

LHC as an Axion Factory: Probing an Axion Explanation for $(g-2)_mu$ with Exotic Higgs Decays

86   0   0.0 ( 0 )
 نشر من قبل Martin Bauer
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that a large region of so far unconstrained parameter space for axion-like particles (ALPs), where their couplings to the Standard Model are of order $(0.01!-!1),mbox{TeV}^{-1}$, can be explored by searches for the exotic Higgs decays $hto Za$ and $hto aa$ in Run-2 of the LHC. Almost the complete region in which ALPs can explain the anomalous magnetic moment of the muon can be probed by searches for these decays with subsequent decay $atogammagamma$, even if the relevant couplings are loop suppressed and the $atogammagamma$ branching ratio is less than~1.



قيم البحث

اقرأ أيضاً

The discrepancy between the muon $g-2$ measurement and the Standard Model prediction points to new physics around or below the weak scale. It is tantalizing to consider the loop effects of a heavy axion (in the general sense, also known as an axion-l ike particle) coupling to leptons and photons as an explanation for this discrepancy. We provide an updated analysis of the necessary couplings, including two-loop contributions, and find that the new physics operators point to an axion decay constant on the order of 10s of GeV. This poses major problems for such an explanation, as the axion couplings to leptons and photons must be generated at low scales. We outline some possibilities for how such couplings can arise, and find that these scenarios predict new charged matter at or below the weak scale and new scalars can mix with the Higgs boson, raising numerous phenomenological challenges. These scenarios also all predict additional contributions to the muon $g-2$ itself, calling the initial application of the axion effective theory into question. We conclude that there is little reason to favor an axion explanation of the muon $g-2$ measurement relative to other models postulating new weak-scale matter.
A massive, but light abelian U(1) gauge boson is a well motivated possible signature of physics beyond the Standard Model of particle physics. In this paper, the search for the signal of such a U(1) gauge boson in electron-positron pair-production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron (MAMI) is described. Exclusion limits in the mass range of 40 MeV up to 300 MeV with a sensitivity in the mixing parameter of down to $epsilon^2 = 8times 10^{-7}$ are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge boson.
We study the possibility of probing new physics accounting for $(g-2)_mu$ anomaly and gravitational waves with pulsar timing array measurements. The model we consider is either a light gauge boson or neutral scalar interacting with muons. We show tha t the parameter spaces of dark $U(1)$ model with kinetic mixing explaining $(g-2)_mu$ anomaly can realize a first-order phase transition, and the yield-produced gravitational wave may address the common red noise observed in the NANOGrav 12.5-yr dataset.
The 8.4 Tesla, 10 m long transverse magnetic field of a twin aperture LHC bending magnet can be utilized as a macroscopic coherent solar axion-to-photon converter. Numerical calculations show that the integrated time of alignment with the Sun would b e 33 days per year with the magnet on a tracking table capable of $pm 5^o$ in the vertical direction and $pm 40^o$ in the horizontal direction. The existing lower bound on the axion-to-photon coupling constant can be improved by a factor between 50 and 100 in 3 years, i.e., $g_{agammagamma} lesssim 9cdot 10^{-11} GeV^{-1}$ for axion masses $lesssim$ 1 eV. This value falls within the existing open axion mass window. The same set-up can simultaneously search for low- and high-energy celestial axions, or axion-like particles, scanning the sky as the Earth rotates and orbits the Sun.
85 - Jie Ren , Daohan Wang , Lei Wu 2021
Axion-Like particles (ALPs) appear in various new physics models with spontaneous global symmetry breaking. When the ALP mass is in the range of MeV to GeV, the cosmology and astrophysics bounds are so far quite weak. In this work, we investigate suc h light ALPs through the ALP-strahlung production process pp to Va(a to {gamma}{gamma}) at the 14TeV LHC with an integrated luminosity of 3000 fb^(-1)(HL-LHC). Building on the concept of jet image which uses calorimeter towers as the pixels of the image and measures a jet as an image, we investigate the potential of machine learning techniques based on convolutional neural network (CNN) to identify the highly boosted ALPs which decay to a pair of highly collimated photons. With the CNN tagging algorithm, we demonstrate that our approach can extend current LHC sensitivity and probe the ALP mass range from 0.3GeV to 10GeV. The obtained bounds are significantly stronger than the existing limits on the ALP-photon coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا