ﻻ يوجد ملخص باللغة العربية
Axion-Like particles (ALPs) appear in various new physics models with spontaneous global symmetry breaking. When the ALP mass is in the range of MeV to GeV, the cosmology and astrophysics bounds are so far quite weak. In this work, we investigate such light ALPs through the ALP-strahlung production process pp to Va(a to {gamma}{gamma}) at the 14TeV LHC with an integrated luminosity of 3000 fb^(-1)(HL-LHC). Building on the concept of jet image which uses calorimeter towers as the pixels of the image and measures a jet as an image, we investigate the potential of machine learning techniques based on convolutional neural network (CNN) to identify the highly boosted ALPs which decay to a pair of highly collimated photons. With the CNN tagging algorithm, we demonstrate that our approach can extend current LHC sensitivity and probe the ALP mass range from 0.3GeV to 10GeV. The obtained bounds are significantly stronger than the existing limits on the ALP-photon coupling.
We propose a new collider probe for axion-like particles (ALPs), and more generally for pseudo-Goldstone bosons: non-resonant searches which take advantage of the derivative nature of their interactions with Standard Model particles. ALPs can partici
We study the tagging of Higgs exotic decay signals using different types of deep neural networks (DNNs), focusing on the $W^pm h$ associated production channel followed by Higgs decaying into $n$ $b$-quarks with $n=4$, 6 and 8. All the Higgs decay pr
Axion-like particles (ALPs) are predicted by many extensions of the Standard Model (SM). When ALP mass lies in the range of MeV to GeV, the cosmology and astrophysics will be largely irrelevant. In this work, we investigate such light ALPs through th
Axion-like particles (ALPs), relatively light (pseudo-)scalars coupled to two gauge bosons, are a common feature of many extensions of the Standard Model. Up to now there has been a gap in the sensitivity to such particles in the MeV to 10 GeV range.
The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly