ترغب بنشر مسار تعليمي؟ اضغط هنا

From Language to Programs: Bridging Reinforcement Learning and Maximum Marginal Likelihood

77   0   0.0 ( 0 )
 نشر من قبل Kelvin Guu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Our goal is to learn a semantic parser that maps natural language utterances into executable programs when only indirect supervision is available: examples are labeled with the correct execution result, but not the program itself. Consequently, we must search the space of programs for those that output the correct result, while not being misled by spurious programs: incorrect programs that coincidentally output the correct result. We connect two common learning paradigms, reinforcement learning (RL) and maximum marginal likelihood (MML), and then present a new learning algorithm that combines the strengths of both. The new algorithm guards against spurious programs by combining the systematic search traditionally employed in MML with the randomized exploration of RL, and by updating parameters such that probability is spread more evenly across consistent programs. We apply our learning algorithm to a new neural semantic parser and show significant gains over existing state-of-the-art results on a recent context-dependent semantic parsing task.

قيم البحث

اقرأ أيضاً

We establish a new connection between value and policy based reinforcement learning (RL) based on a relationship between softmax temporal value consistency and policy optimality under entropy regularization. Specifically, we show that softmax consist ent action values correspond to optimal entropy regularized policy probabilities along any action sequence, regardless of provenance. From this observation, we develop a new RL algorithm, Path Consistency Learning (PCL), that minimizes a notion of soft consistency error along multi-step action sequences extracted from both on- and off-policy traces. We examine the behavior of PCL in different scenarios and show that PCL can be interpreted as generalizing both actor-critic and Q-learning algorithms. We subsequently deepen the relationship by showing how a single model can be used to represent both a policy and the corresponding softmax state values, eliminating the need for a separate critic. The experimental evaluation demonstrates that PCL significantly outperforms strong actor-critic and Q-learning baselines across several benchmarks.
Consider a setting with $N$ independent individuals, each with an unknown parameter, $p_i in [0, 1]$ drawn from some unknown distribution $P^star$. After observing the outcomes of $t$ independent Bernoulli trials, i.e., $X_i sim text{Binomial}(t, p_i )$ per individual, our objective is to accurately estimate $P^star$. This problem arises in numerous domains, including the social sciences, psychology, health-care, and biology, where the size of the population under study is usually large while the number of observations per individual is often limited. Our main result shows that, in the regime where $t ll N$, the maximum likelihood estimator (MLE) is both statistically minimax optimal and efficiently computable. Precisely, for sufficiently large $N$, the MLE achieves the information theoretic optimal error bound of $mathcal{O}(frac{1}{t})$ for $t < clog{N}$, with regards to the earth movers distance (between the estimated and true distributions). More generally, in an exponentially large interval of $t$ beyond $c log{N}$, the MLE achieves the minimax error bound of $mathcal{O}(frac{1}{sqrt{tlog N}})$. In contrast, regardless of how large $N$ is, the naive plug-in estimator for this problem only achieves the sub-optimal error of $Theta(frac{1}{sqrt{t}})$.
The Reward-Biased Maximum Likelihood Estimate (RBMLE) for adaptive control of Markov chains was proposed to overcome the central obstacle of what is variously called the fundamental closed-identifiability problem of adaptive control, the dual control problem, or, contemporaneously, the exploration vs. exploitation problem. It exploited the key observation that since the maximum likelihood parameter estimator can asymptotically identify the closed-transition probabilities under a certainty equivalent approach, the limiting parameter estimates must necessarily have an optimal reward that is less than the optimal reward attainable for the true but unknown system. Hence it proposed a counteracting reverse bias in favor of parameters with larger optimal rewards, providing a solution to the fundamental problem alluded to above. It thereby proposed an optimistic approach of favoring parameters with larger optimal rewards, now known as optimism in the face of uncertainty. The RBMLE approach has been proved to be long-term average reward optimal in a variety of contexts. However, modern attention is focused on the much finer notion of regret, or finite-time performance. Recent analysis of RBMLE for multi-armed stochastic bandits and linear contextual bandits has shown that it not only has state-of-the-art regret, but it also exhibits empirical performance comparable to or better than the best current contenders, and leads to strikingly simple index policies. Motivated by this, we examine the finite-time performance of RBMLE for reinforcement learning tasks that involve the general problem of optimal control of unknown Markov Decision Processes. We show that it has a regret of $mathcal{O}( log T)$ over a time horizon of $T$ steps, similar to state-of-the-art algorithms. Simulation studies show that RBMLE outperforms other algorithms such as UCRL2 and Thompson Sampling.
We consider graphs that represent pairwise marginal independencies amongst a set of variables (for instance, the zero entries of a covariance matrix for normal data). We characterize the directed acyclic graphs (DAGs) that faithfully explain a given set of independencies, and derive algorithms to efficiently enumerate such structures. Our results map out the space of faithful causal models for a given set of pairwise marginal independence relations. This allows us to show the extent to which causal inference is possible without using conditional independence tests.
Deep reinforcement learning (DRL) methods such as the Deep Q-Network (DQN) have achieved state-of-the-art results in a variety of challenging, high-dimensional domains. This success is mainly attributed to the power of deep neural networks to learn r ich domain representations for approximating the value function or policy. Batch reinforcement learning methods with linear representations, on the other hand, are more stable and require less hyper parameter tuning. Yet, substantial feature engineering is necessary to achieve good results. In this work we propose a hybrid approach -- the Least Squares Deep Q-Network (LS-DQN), which combines rich feature representations learned by a DRL algorithm with the stability of a linear least squares method. We do this by periodically re-training the last hidden layer of a DRL network with a batch least squares update. Key to our approach is a Bayesian regularization term for the least squares update, which prevents over-fitting to the more recent data. We tested LS-DQN on five Atari games and demonstrate significant improvement over vanilla DQN and Double-DQN. We also investigated the reasons for the superior performance of our method. Interestingly, we found that the performance improvement can be attributed to the large batch size used by the LS method when optimizing the last layer.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا