ترغب بنشر مسار تعليمي؟ اضغط هنا

Lightning Chemistry on Earth-like Exoplanets

146   0   0.0 ( 0 )
 نشر من قبل Paul B. Rimmer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model for lightning shock induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ~ 1e-3 at 40 km and NO2 ~ 1e-4 below 40 km, with O3 reduced to trace quantities (<< 1e-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2, and predict significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ~3.4 {mu}m and ~6.2 {mu}m. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with JWST. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.

قيم البحث

اقرأ أيضاً

Before about 500 million years ago, most probably our planet experienced temporary snowball conditions, with continental and sea ices covering a large fraction of its surface. This points to a potential bistability of Earths climate, that can have at least two different (statistical) equilibrium states for the same external forcing (i.e., solar radiation). Here we explore the probability of finding bistable climates in earth-like exoplanets, and consider the properties of planetary climates obtained by varying the semi-major orbital axis (thus, received stellar radiation), eccentricity and obliquity, and atmospheric pressure. To this goal, we use the Earth-like planet surface temperature model (ESTM), an extension of 1D Energy Balance Models developed to provide a numerically efficient climate estimator for parameter sensitivity studies and long climatic simulations. After verifying that the ESTM is able to reproduce Earth climate bistability, we identify the range of parameter space where climate bistability is detected. An intriguing result of the present work is that the planetary conditions that support climate bistability are remarkably similar to those required for the sustainance of complex, multicellular life on the planetary surface. The interpretation of this result deserves further investigation, given its relevance for the potential distribution of life in exoplanetary systems.
Observations and models suggest that the conditions to develop lightning may be present in cloud-forming extrasolar planetary and brown dwarf atmospheres. Whether lightning on these objects is similar to or very different from what is known from the Solar System awaits answering as lightning from extrasolar objects has not been detected yet. We explore terrestrial lightning parameterisations to compare the energy radiated and the total radio power emitted from lightning discharges for Earth, Jupiter, Saturn, extrasolar giant gas planets and brown dwarfs. We find that lightning on hot, giant gas planets and brown dwarfs may have energies of the order of $10^{11}$--$10^{17}$ J, which is two to eight orders of magnitude larger than the average total energy of Earth lightning ($10^9$ J), and up to five orders of magnitude more energetic than lightning on Jupiter or Saturn ($10^{12}$ J), affirming the stark difference between these atmospheres. Lightning on exoplanets and brown dwarfs may be more energetic and release more radio power than what has been observed from the Solar System. Such energies would increase the probability of detecting lightning-related radio emission from an extrasolar body.
As we begin to discover rocky planets in the habitable zone of nearby stars with missions like TESS and CHEOPS, we will need quick advancements on instrumentation and observational techniques that will enable us to answer key science questions, such as What are the atmospheric characteristics of habitable zone rocky planets? How common are Earth-like biosignatures in rocky planets?} How similar or dissimilar are those planets to Earth? Over the next decade we expect to have discovered several Earth-analog candidates, but we will not have the tools to study the atmospheres of all of them in detail. Ground-based ELTs can identify biosignatures in the spectra of these candidate exo-Earths and understand how the planets atmospheres compare to the Earth at different epochs. Transit spectroscopy, high-resolution spectroscopy, and reflected-light direct imaging on ELTs can identify multiple biosignatures for habitable zone, rocky planets around M stars at optical to near-infrared wavelengths. Thermal infrared direct imaging can detect habitable zone, rocky planets around AFGK stars, identifying ozone and motivating reflected-light follow-up observations with NASA missions like HabEx/LUVOIR. Therefore, we recommend that the Astro2020 Decadal Survey Committee support: (1) the search for Earth-like biosignatures on rocky planets around nearby stars as a key science case; (2) the construction over the next decade of ground-based Extremely Large Telecopes (ELTs), which will provide the large aperture and spatial resolution necessary to start revealing the atmospheres of Earth-analogues around nearby stars; (3) the development of instrumentation that optimizes the detection of biosignatures; and (4) the generation of accurate line lists for potential biosignature gases, which are needed as model templates to detect those molecules.
With the discovery of ever smaller and colder exoplanets, terrestrial worlds with hazy atmospheres must be increasingly considered. Our Solar Systems Titan is a prototypical hazy planet, whose atmosphere may be representative of a large number of pla nets in our Galaxy. As a step towards characterizing such worlds, we present simulations of exoplanets that resemble Titan, but orbit three different stellar hosts: G-, K-, and M-dwarf stars. We use general circulation and photochemistry models to explore the circulation and chemistry of these Titan-like planets under varying stellar spectra, in all cases assuming a Titan-like insolation. Due to the strong absorption of visible light by atmospheric haze, the redder radiation accompanying later stellar types produces more isothermal stratospheres, stronger meridional temperature gradients at mbar pressures, and deeper and stronger zonal winds. In all cases, the planets atmospheres are strongly superrotating, but meridional circulation cells are weaker aloft under redder starlight. The photochemistry of hydrocarbon and nitrile species varies with stellar spectra, with variations in the FUV/NUV flux ratio playing an important role. Our results tentatively suggest that column haze production rates could be similar under all three hosts, implying that planets around many different stars could have similar characteristics to Titans atmosphere. Lastly, we present theoretical emission spectra. Overall, our study indicates that, despite important and subtle differences, the circulation and chemistry of Titan-like exoplanets are relatively insensitive to differences in host star. These findings may be further probed with future space-based facilities, like WFIRST, LUVOIR, HabEx, and OST.
We present estimations of dipolar magnetic moments for terrestrial exoplanets using the Olson & Christiansen (2006) scaling law and assuming their interior structure is similar to Earth. We find that the dipolar moment of fast rotating planets (where the Coriolis force dominates convection in the core), may amount up to ~80 times the magnetic moment of Earth, M_Earth, for at least part of the planets lifetime. For very slow rotating planets (where the force of inertia dominates), the dipolar magnetic moment only reaches up to ~1.5 M_Earth. Applying our calculations to currently confirmed rocky exoplanets, we find that CoRoT-7b, Kepler-10b and 55 Cnc e can sustain dynamos up to ~ 18, 15 and 13 M_Earth, respectively. Our results also indicate that the magnetic moment of rocky exoplanets not only depends on their rotation rate, but also on their formation history, thermal state, age and composition, as well as the geometry of the field. These results apply to all rocky planets, but have important implications for the particular case of exoplanets in the Habitable Zone of M-dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا