ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Earth-like Biosignatures on Rocky Exoplanets around Nearby Stars with Ground-based Extremely Large Telescopes

72   0   0.0 ( 0 )
 نشر من قبل Mercedes L\\'opez-Morales
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As we begin to discover rocky planets in the habitable zone of nearby stars with missions like TESS and CHEOPS, we will need quick advancements on instrumentation and observational techniques that will enable us to answer key science questions, such as What are the atmospheric characteristics of habitable zone rocky planets? How common are Earth-like biosignatures in rocky planets?} How similar or dissimilar are those planets to Earth? Over the next decade we expect to have discovered several Earth-analog candidates, but we will not have the tools to study the atmospheres of all of them in detail. Ground-based ELTs can identify biosignatures in the spectra of these candidate exo-Earths and understand how the planets atmospheres compare to the Earth at different epochs. Transit spectroscopy, high-resolution spectroscopy, and reflected-light direct imaging on ELTs can identify multiple biosignatures for habitable zone, rocky planets around M stars at optical to near-infrared wavelengths. Thermal infrared direct imaging can detect habitable zone, rocky planets around AFGK stars, identifying ozone and motivating reflected-light follow-up observations with NASA missions like HabEx/LUVOIR. Therefore, we recommend that the Astro2020 Decadal Survey Committee support: (1) the search for Earth-like biosignatures on rocky planets around nearby stars as a key science case; (2) the construction over the next decade of ground-based Extremely Large Telecopes (ELTs), which will provide the large aperture and spatial resolution necessary to start revealing the atmospheres of Earth-analogues around nearby stars; (3) the development of instrumentation that optimizes the detection of biosignatures; and (4) the generation of accurate line lists for potential biosignature gases, which are needed as model templates to detect those molecules.



قيم البحث

اقرأ أيضاً

We present a model for lightning shock induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ~ 1e-3 at 40 km and NO2 ~ 1e-4 below 40 km, with O3 reduced to trace quantities (<< 1e-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2, and predict significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ~3.4 {mu}m and ~6.2 {mu}m. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with JWST. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.
Data suggest that most rocky exoplanets with orbital period $p$ $<$ 100 d (hot rocky exoplanets) formed as gas-rich sub-Neptunes that subsequently lost most of their envelopes, but whether these rocky exoplanets still have atmospheres is unknown. We identify a pathway by which 1-1.7 $R_{Earth}$ (1-10 $M_{Earth}$) rocky exoplanets with orbital periods of 10-100 days can acquire long-lived 10-2000 bar atmospheres that are H$_2$O-dominated, with mean molecular weight $>$10. These atmospheres form during the planets evolution from sub-Neptunes into rocky exoplanets. H$_2$O that is made by reduction of iron oxides in the silicate magma is highly soluble in the magma, forming a dissolved reservoir that is protected from loss so long as the H$_2$-dominated atmosphere persists. The large size of the dissolved reservoir buffers the H$_2$O atmosphere against loss after the H$_2$ has dispersed. Within our model, a long-lived, water-dominated atmosphere is a common outcome for efficient interaction between a nebula-derived atmosphere (peak atmosphere mass fraction 0.1-0.6 wt%) and oxidized magma ($>$5 wt% FeO), followed by atmospheric loss. This idea predicts that most rocky planets that have orbital periods of 10-100 days and that have radii within 0.1-0.2 $R_{Earth}$ of the lower edge of the radius valley still retain H$_2$O atmospheres. This prediction is imminently testable with JWST and has implications for the interpretation of data for transiting super-Earths.
165 - S. Carpano , M. Fridlund 2008
Context. Detecting regular dips in the light curve of a star is an easy way to detect the presence of an orbiting planet. COROT is a Franco-European mission launched at the end of 2006, and one of its main objectives is to detect planetary systems us ing the transit method. Aims. In this paper, we present a new method for transit detection and determine the smallest detected planetary radius, assuming a parent star like the Sun. Methods. We simulated light curves with Poisson noise and stellar variability, for which data from the VIRGO/PMO6 instrument on board SoHO were used. Transits were simulated using the UTM software. Light curves were denoised by the mean of a low-pass and a high-pass filter. The detection of periodic transits works on light curves folded at several trial periods with the particularity that no rebinning is performed after the folding. The best fit was obtain when all transits are overlayed, i.e when the data are folded at the right period. Results. Assuming a single data set lasting 150d, transits from a planet with a radius down to 2 Rearth can be detected. The efficiency depends neither on the transit duration nor on the number of transits observed. Furthermore we simulated transits with periods close to 150d in data sets containing three observations of 150d, separated by regular gaps with the same length. Again, planets with a radius down to 2 Rearth can be detected. Conclusions. Within the given range of parameters, the detection efficiency depends slightly on the apparent magnitude of the star but neither on the transit duration nor the number of transits. Furthermore, multiple observations might represent a solution for the COROT mission for detecting small planets when the orbital period is much longer than the duration of a single observation.
Before about 500 million years ago, most probably our planet experienced temporary snowball conditions, with continental and sea ices covering a large fraction of its surface. This points to a potential bistability of Earths climate, that can have at least two different (statistical) equilibrium states for the same external forcing (i.e., solar radiation). Here we explore the probability of finding bistable climates in earth-like exoplanets, and consider the properties of planetary climates obtained by varying the semi-major orbital axis (thus, received stellar radiation), eccentricity and obliquity, and atmospheric pressure. To this goal, we use the Earth-like planet surface temperature model (ESTM), an extension of 1D Energy Balance Models developed to provide a numerically efficient climate estimator for parameter sensitivity studies and long climatic simulations. After verifying that the ESTM is able to reproduce Earth climate bistability, we identify the range of parameter space where climate bistability is detected. An intriguing result of the present work is that the planetary conditions that support climate bistability are remarkably similar to those required for the sustainance of complex, multicellular life on the planetary surface. The interpretation of this result deserves further investigation, given its relevance for the potential distribution of life in exoplanetary systems.
We present estimations of dipolar magnetic moments for terrestrial exoplanets using the Olson & Christiansen (2006) scaling law and assuming their interior structure is similar to Earth. We find that the dipolar moment of fast rotating planets (where the Coriolis force dominates convection in the core), may amount up to ~80 times the magnetic moment of Earth, M_Earth, for at least part of the planets lifetime. For very slow rotating planets (where the force of inertia dominates), the dipolar magnetic moment only reaches up to ~1.5 M_Earth. Applying our calculations to currently confirmed rocky exoplanets, we find that CoRoT-7b, Kepler-10b and 55 Cnc e can sustain dynamos up to ~ 18, 15 and 13 M_Earth, respectively. Our results also indicate that the magnetic moment of rocky exoplanets not only depends on their rotation rate, but also on their formation history, thermal state, age and composition, as well as the geometry of the field. These results apply to all rocky planets, but have important implications for the particular case of exoplanets in the Habitable Zone of M-dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا