ترغب بنشر مسار تعليمي؟ اضغط هنا

Community targets for JWSTs early release science program: evaluation of WASP-63b

59   0   0.0 ( 0 )
 نشر من قبل Brian Kilpatrick
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of WASP-63b by the Hubble Space Telescope (HST) as part of A Preparatory Program to Identify the Single Best Transiting Exoplanet for JWST Early Release Science. WASP-63b is one of the community targets under consideration for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. We present a spectrum derived from a single observation by HST Wide Field Camera 3 in the near infrared. We engaged groups across the transiting exoplanet community to participate in the analysis of the data and present results from each. There is general agreement amongst all results that we find an H2O absorption feature with 3.5-4.0 sigma significance. However, the feature is muted in comparison to a clear atmosphere at solar composition. Although the detection of the water feature is robust, the reasons for the muting of this feature are ambiguous due to a degeneracy between clouds and composition. The data does not yield robust detections of any molecular species other than H2O. The group was motivated to perform an additional set of retrieval exercises to investigate an apparent bump in the spectrum at ~ 1.55 um. We explore possible disequilibrium chemistry and find this feature is consistent with super-solar HCN abundance but it is questionable if the required mixing ratio of HCN is chemically and physically plausible. The ultimate goal of this study is to vet WASP-63b as a potential community target to best demonstrate the capabilities and systematics of JWST instruments for transiting exoplanet science. In the case of WASP-63b, the presence of a detectable water feature indicates that WASP-63b remains a plausible target for ERS observations.



قيم البحث

اقرأ أيضاً

The James Webb Space Telescope (JWST) presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. How ever, the high-precision, time-series observations required for such investigations have unique technical challenges, and prior experience with other facilities indicates that there will be a steep learning curve when JWST becomes operational. In this paper we describe the science objectives and detailed plans of the Transiting Exoplanet Community Early Release Science (ERS) Program, which is a recently approved program for JWST observations early in Cycle 1. The goal of this project, for which the obtained data will have no exclusive access period, is to accelerate the acquisition and diffusion of technical expertise for transiting exoplanet observations with JWST, while also providing a compelling set of representative datasets that will enable immediate scientific breakthroughs. The Transiting Exoplanet Community ERS Program will exercise the time-series modes of all four JWST instruments that have been identified as the consensus highest priorities, observe the full suite of transiting planet characterization geometries (transits, eclipses, and phase curves), and target planets with host stars that span an illustrative range of brightnesses. The observations in this program were defined through an inclusive and transparent process that had participation from JWST instrument experts and international leaders in transiting exoplanet studies. Community engagement in the project will be centered on a two-phase Data Challenge that culminates with the delivery of planetary spectra, time-series instrument performance reports, and open-source data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST mission.
We present results on the size evolution of passively evolving galaxies at 1<z<2 drawn from the Wide Field Camera 3 Early Release Science program. Our sample was constructed using an analog to the passive BzK selection criterion, which isolates galax ies with little or no on-going star formation at z>1.5. We identify 30 galaxies in ~40 square arcmin to H<25 mag. We supplement spectroscopic redshifts from the literature with photometric redshifts determined from the 15-band photometry from 0.22-8 micron. We determine effective radii from Sersic profile fits to the H-band image using an empirical PSF. We find that size evolution is a strong function of stellar mass, with the most massive (M* ~ 10^11 Msol) galaxies undergoing the most rapid evolution from z~2 to the present. Parameterizing the size evolution as (1+z)^{-alpha}, we find a tentative scaling between alpha and stellar mass of alpha ~ -1.8+1.4 log(M*/10^9 Msol). We briefly discuss the implications of this result for our understanding of the dynamical evolution of the red galaxies.
The WASP (Wide Angle Search for Planets) project is an exoplanet transit survey that has been automatically taking wide field images since 2004. Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, buildi ng up light curves of millions of unique objects. These light curves are used to search for the characteristics of exoplanetary transits. This first public data release (DR1) of the WASP archive makes available all the light curve data and images from 2004 up to 2008 in both the Northern and Southern hemispheres. A web interface (www.wasp.le.ac.uk/public/) to the data allows easy access over the Internet. The data set contains 3 631 972 raw images and 17 970 937 light curves. In total the light curves have 119 930 299 362 data points available between them.
The Transiting Exoplanet Survey Satellite (TESS) recently observed 18 transits of the hot Jupiter WASP-4b. The sequence of transits occurred 81.6 $pm$ 11.7 seconds earlier than had been predicted, based on data stretching back to 2007. This is unlike ly to be the result of a clock error, because TESS observations of other hot Jupiters (WASP-6b, 18b, and 46b) are compatible with a constant period, ruling out an 81.6-second offset at the 6.4$sigma$ level. The 1.3-day orbital period of WASP-4b appears to be decreasing at a rate of $dot{P} = -12.6 pm 1.2$ milliseconds per year. The apparent period change might be caused by tidal orbital decay or apsidal precession, although both interpretations have shortcomings. The gravitational influence of a third body is another possibility, though at present there is minimal evidence for such a body. Further observations are needed to confirm and understand the timing variation.
The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer will survey nearby stars for faint emission arising from ~300 K dust (exozodiacal dust), and aims to determine the exozodiacal dust luminosity function. HOSTS results will enable planning for future space telescopes aimed at direct spectroscopy of habitable zone terrestrial planets, as well as greater understanding of the evolution of exozodiacal disks and planetary systems. We lay out here the considerations that lead to the final HOSTS target list. Our target selection strategy maximizes the ability of the survey to constrain the exozodi luminosity function by selecting a combination of stars selected for suitability as targets of future missions and as sensitive exozodi probes. With a survey of approximately 50 stars, we show that HOSTS can enable an understanding of the statistical distribution of warm dust around various types of stars and is robust to the effects of varying levels of survey sensitivity induced by weather conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا