ترغب بنشر مسار تعليمي؟ اضغط هنا

The first WASP public data release

276   0   0.0 ( 0 )
 نشر من قبل Oliver Butters Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The WASP (Wide Angle Search for Planets) project is an exoplanet transit survey that has been automatically taking wide field images since 2004. Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, building up light curves of millions of unique objects. These light curves are used to search for the characteristics of exoplanetary transits. This first public data release (DR1) of the WASP archive makes available all the light curve data and images from 2004 up to 2008 in both the Northern and Southern hemispheres. A web interface (www.wasp.le.ac.uk/public/) to the data allows easy access over the Internet. The data set contains 3 631 972 raw images and 17 970 937 light curves. In total the light curves have 119 930 299 362 data points available between them.



قيم البحث

اقرأ أيضاً

This paper describes the observations and the first data release (DR1) of the ESO public spectroscopic survey VANDELS, a deep VIMOS survey of the CANDELS CDFS and UDS fields. VANDELS main targets are star-forming galaxies at 2.4<z<5.5 and massive pas sive galaxies at 1<z<2.5. By adopting a strategy of ultra-long exposure times, from 20 to 80 hours per source, VANDELS is designed to be the deepest ever spectroscopic survey of the high-redshift Universe. Exploiting the red sensitivity of the VIMOS spectrograph, the survey has obtained ultra-deep spectra covering the wavelength 4800-10000 A with sufficient signal-to-noise to investigate the astrophysics of high-redshift galaxy evolution via detailed absorption line studies. The VANDELS-DR1 is the release of all spectra obtained during the first season of observations and includes data for galaxies for which the total (or half of the total) scheduled integration time was completed. The release contains 879 individual objects with a measured redshift and includes fully wavelength and flux-calibrated 1D spectra, the associated error spectra, sky spectra and wavelength-calibrated 2D spectra. We also provide a catalog with the essential galaxy parameters, including spectroscopic redshifts and redshift quality flags. In this paper we present the survey layout and observations, the data reduction and redshift measurement procedure and the general properties of the VANDELS-DR1 sample. We also discuss the spectroscopic redshift distribution, the accuracy of the photometric redshifts and we provide some examples of data products. All VANDELS-DR1 data are publicly available and can be retrieved from the ESO archive. Two further data releases are foreseen in the next 2 years with a final release scheduled for June 2020 which will include improved re-reduction of the entire spectroscopic data set. (abridged)
We present the full public release of all data from the TNG50, TNG100 and TNG300 simulations of the IllustrisTNG project. IllustrisTNG is a suite of large volume, cosmological, gravo-magnetohydrodynamical simulations run with the moving-mesh code Are po. TNG includes a comprehensive model for galaxy formation physics, and each TNG simulation self-consistently solves for the coupled evolution of dark matter, cosmic gas, luminous stars, and supermassive blackholes from early time to the present day, z=0. Each of the flagship runs -- TNG50, TNG100, and TNG300 -- are accompanied by lower-resolution and dark-matter only counterparts, and we discuss scientific and numerical cautions and caveats relevant when using TNG. Full volume snapshots are available at 100 redshifts; halo and subhalo catalogs at each snapshot and merger trees are also released. The data volume now directly accessible online is ~1.1 PB, including 2,000 full volume snapshots and ~110,000 high time-resolution subbox snapshots. Data access and analysis examples are available in IDL, Python, and Matlab. We describe improvements and new functionality in the web-based API, including on-demand visualization and analysis of galaxies and halos, exploratory plotting of scaling relations and other relationships between galactic and halo properties, and a new JupyterLab interface. This provides an online, browser-based, near-native data analysis platform which supports user computation with fully local access to TNG data, alleviating the need to download large simulated datasets.
We present the first public data release of the CALIFA survey. It consists of science-grade optical datacubes for the first 100 of eventually 600 nearby (0.005<z<0.03) galaxies, obtained with the integral-field spectrograph PMAS/PPak mounted on the 3 .5m telescope at the Calar Alto observatory. The galaxies in DR1 already cover a wide range of properties in color-magnitude space, morphological type, stellar mass, and gas ionization conditions. This offers the potential to tackle a variety of open questions in galaxy evolution using spatially resolved spectroscopy. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the nominal wavelength range 3745-7500A with a spectral resolution of 6.0A (FWHM), and (ii) a medium-resolution V1200 setup covering the nominal wavelength range 3650-4840A with a spectral resolution of 2.3A (FWHM). We present the characteristics and data structure of the CALIFA datasets that should be taken into account for scientific exploitation of the data, in particular the effects of vignetting, bad pixels and spatially correlated noise. The data quality test for all 100 galaxies showed that we reach a median limiting continuum sensitivity of 1.0x10^-18erg/s/cm^2/A/arcsec^2 at 5635A and 2.2x10^-18erg/s/cm^2/A/arcsec^2 at 4500A for the V500 and V1200 setup respectively, which corresponds to limiting r and g band surface brightnesses of 23.6mag/arcsec^2 and 23.4mag/arcsec^2, or an unresolved emission-line flux detection limit of roughly 1x10^-17erg/s/cm^2/arcsec^2 and 0.6x10^-17erg/s/cm^2/arcsec^2, respectively. The median spatial resolution is 3.7, and the absolute spectrophotometric calibration is better than 15% (1sigma). We also describe the available interfaces and tools that allow easy access to this first public CALIFA data.
We present the first Public Data Release (PDR-1) of the VIMOS Public Extragalactic Survey (VIPERS). It comprises 57 204 spectroscopic measurements together with all additional information necessary for optimal scientific exploitation of the data, in particular the associated photometric measurements and quantification of the photometric and survey completeness. VIPERS is an ESO Large Programme designed to build a spectroscopic sample of 100 000 galaxies with iAB < 22.5 and 0.5 < z < 1.5 with high sampling rate (~45%). The survey spectroscopic targets are selected from the CFHTLS-Wide five-band catalogues in the W1 and W4 fields. The final survey will cover a total area of nearly 24 deg2, for a total comoving volume between z = 0.5 and 1.2 of ~4x10^7 h^(-3)Mpc^3 and a median galaxy redshift of z~0.8. The release presented in this paper includes data from virtually the entire W4 field and nearly half of the W1 area, thus representing 64% of the final dataset. We provide a detailed description of sample selection, observations and data reduction procedures; we summarise the global properties of the spectroscopic catalogue and explain the associated data products and their use, and provide all the details for accessing the data through the survey database (http://vipers.inaf.it) where all information can be queried interactively.
71 - Andrina Nicola 2019
We analyze the clustering of galaxies in the first public data release of the HSC Subaru Strategic Program. Despite the relatively small footprints of the observed fields, the data are an excellent proxy for the deep photometric datasets that will be acquired by LSST, and are therefore an ideal test bed for the analysis methods being implemented by the LSST DESC. We select a magnitude limited sample with $i<24.5$ and analyze it in four redshift bins covering $0.15lesssim z lesssim1.5$. We carry out a Fourier-space analysis of the two-point clustering of this sample, including all auto- and cross-correlations. We demonstrate the use of map-level deprojection methods to account for fluctuations in the galaxy number density caused by observational systematics. Through an HOD analysis, we place constraints on the characteristic halo masses of this sample, finding a good fit up to scales $k_{rm max}=1,{rm Mpc}^{-1}$, including both auto- and cross-correlations. Our results show monotonically decreasing average halo masses, which can be interpreted in terms of the drop-out of red galaxies at high redshifts for a flux-limited sample. In terms of photometric redshift systematics, we show that additional care is needed in order to marginalize over uncertainties in the redshift distribution in galaxy clustering, and that these uncertainties can be constrained by including cross-correlations. We are able to make a $sim3sigma$ detection of lensing magnification in the HSC data. Our results are stable to variations in $sigma_8$ and $Omega_c$ and we find constraints that agree well with measurements from Planck and low-redshift probes. Finally, we use our pipeline to study the clustering of galaxies as a function of limiting flux, and provide a simple fitting function for the linear galaxy bias for magnitude limited samples as a function of limiting magnitude and redshift. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا