ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational consequences of optical band milliarcsecond-scale structure in active galactic nuclei discovered by Gaia

309   0   0.0 ( 0 )
 نشر من قبل Leonid Petrov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We interpret the recent discovery of a preferable VLBI/Gaia offset direction for radio-loud active galactic nuclei (AGNs) along the parsec-scale radio jets as a manifestation of their optical structure on scales of 1 to 100 milliarcseconds. The extended jet structure affects the Gaia position stronger than the VLBI position due to the difference in observing techniques. Gaia detects total power while VLBI measures the correlated quantity, visibility, and therefore, sensitive to compact structures. The synergy of VLBI that is sensitive to the position of the most compact source component, usually associated with the opaque radio core, and Gaia that is sensitive to the centroid of optical emission, opens a window of opportunity to study optical jets at milliarcsecond resolution, two orders of magnitude finer than the resolution of most existing optical instruments. We demonstrate that strong variability of optical jets is able to cause a jitter comparable to the VLBI/Gaia offsets at a quiet state, i.e. several milliarcseconds. We show that the VLBI/Gaia position jitter correlation with the AGN optical light curve may help to locate the region where the flare occurred, estimate its distance from the super-massive black hole and the ratio of the flux density in the flaring region to the total flux density.

قيم البحث

اقرأ أيضاً

100 - Y. Y. Kovalev 2005
We have used VLBA fringe visibility data obtained at 15 GHz to examine the compact structure in 250 extragalactic radio sources. For 171 sources in our sample, more than half of the total flux density seen by the VLBA remains unresolved on the longes t baselines. There are 163 sources in our list with a median correlated flux density at 15 GHz in excess of 0.5 Jy on the longest baselines. For about 60% of the sources, we have at least one observation in which the core component appears unresolved (generally smaller than 0.05 mas) in one direction, usually transverse to the direction into which the jet extends. BL Lacs are on average more compact than quasars, while active galaxies are on average less compact. Also, in an active galaxy the sub-milliarcsecond core component tends to be less dominant. IDV sources typically have a more compact, more core-dominated structure on sub-milliarcsecond scales than non-IDV sources, and sources with a greater amplitude of intra-day variations tend to have a greater unresolved VLBA flux density. The objects known to be GeV gamma-ray loud appear to have a more compact VLBA structure than the other sources in our sample. This suggests that the mechanisms for the production of gamma-ray emission and for the generation of compact radio synchrotron emitting features are related. The brightness temperature estimates and lower limits for the cores in our sample typically range between 10^11 and 10^13 K, but they extend up to 5x10^13 K, apparently in excess of the equipartition brightness temperature, or the inverse Compton limit for stationary synchrotron sources. The largest component speeds are observed in radio sources with high observed brightness temperatures, as would be expected from relativistic beaming (abridged).
We present a summary of the observation strategy of TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry), a monitoring program to study the parsec-scale structure and dynamics of relativistic jets in active galactic nuc lei (AGN) of the Southern Hemisphere with the Australian Long Baseline Array (LBA) and the trans-oceanic antennas Hartebeesthoek, TIGO, and OHiggins. TANAMI is focusing on extragalactic sources south of -30 degrees declination with observations at 8.4 GHz and 22 GHz every ~2 months at milliarcsecond resolution. The initial TANAMI sample of 43 sources has been defined before the launch of the Fermi Gamma Ray Space Telescope to include the most promising candidates for bright gamma-ray emission to be detected with its Large Area Telescope (LAT). Since November 2008, we have been adding new sources to the sample, which now includes all known radio- and gamma-ray bright AGN of the Southern Hemisphere. The combination of VLBI and gamma-ray observations is crucial to understand the broadband emission characteristics of AGN and the nature of relativistic jets.
X-ray reverberation in Active Galactic Nuclei, believed to be the result of the reprocessing of coronal photons by the underlying accretion disc, has allowed us to probe the properties of the inner-most regions of the accretion flow and the central b lack hole. Our current model (KYNREFREV) computes the time-dependent reflection spectra of the disc as a response to a flash of primary power-law radiation from a point source corona located on the axis of the black hole accretion disc (lamp-post geometry). Full relativistic effects are taken into account. The ionization of the disc is set for each radius according to the amount of the incident primary flux and the density of the accretion disc. We detect wavy residuals around the best-fit reverberation model time lags at high frequencies. This result suggests that the simple lamp-post geometry does not fully explain the X-ray source/disc configuration in Active Galactic Nuclei. There has been a noticeable progress into the development of codes for extended coronae (Wilkins+16, Chainakun & Young 2017, Taylor & Reynolds 2018a,b). Indeed, the model from Chainakun & Young (2017), consisting of two axial point sources illuminating an accretion disc that produce the reverberation lags is able to reproduce the observed time-lag versus frequency spectra. The goal of this paper is to observationally justify the need for an extended corona in order to provide (in the near future) with a mathematical formulation of a model for an extended corona in its simplest form.
109 - F. Marin , M. Stalevski 2015
If the existence of an obscuring circumnuclear region around the innermost regions of active galactic nuclei (AGN) has been observationally proven, its geometry remains highly uncertain. The morphology usually adopted for this region is a toroidal st ructure, but other alternatives, such as flared disks, can be a good representative of equatorial outflows. Those two geometries usually provide very similar spectroscopic signatures, even when they are modeled under the assumption of fragmentation. In this lecture note, we show that the resulting polarization signatures of the two models, either a torus or a flared disk, are quite different from each other. We use a radiative transfer code that computes the 2000 - 8000 angstrom polarization of the two morphologies in a clumpy environment, and show that varying the sizes of a toroidal region has deep impacts onto the resulting polarization, while the polarization of flared disks is independent of the outer radius. Clumpy flared disks also produce higher polarization degrees (about 10 % at best) together with highly variable polarization position angles.
185 - Y.Y. Kovalev 2016
The data release 1 (DR1) of milliarcsecond-scale accurate optical positions of stars and galaxies was recently published by the space mission Gaia. We study the offsets of highly accurate absolute radio (very long baseline interferometry, VLBI) and o ptical positions of active galactic nuclei (AGN) to see whether or not a signature of wavelength-dependent parsec-scale structure can be seen. We analyzed VLBI and Gaia positions and determined the direction of jets in 2957 AGNs from their VLBI images. We find that there is a statistically significant excess of sources with VLBI-to-Gaia position offset in directions along and opposite to the jet. Offsets along the jet vary from zero to tens of mas. Offsets in the opposite direction do not exceed 3 mas. The presense of strong, extended parsec-scale optical jet structures in many AGNs is required to explain all observed VLBI-Gaia offsets along the jet direction. The offsets in the opposite direction shorter than 1 mas can be explained either by a non-point-like VLBI jet structure or a core-shift effect due to synchrotron opacity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا