ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Reverberation Observational Modelling in Active Galactic Nuclei

163   0   0.0 ( 0 )
 نشر من قبل Maria D. Caballero-Garcia Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray reverberation in Active Galactic Nuclei, believed to be the result of the reprocessing of coronal photons by the underlying accretion disc, has allowed us to probe the properties of the inner-most regions of the accretion flow and the central black hole. Our current model (KYNREFREV) computes the time-dependent reflection spectra of the disc as a response to a flash of primary power-law radiation from a point source corona located on the axis of the black hole accretion disc (lamp-post geometry). Full relativistic effects are taken into account. The ionization of the disc is set for each radius according to the amount of the incident primary flux and the density of the accretion disc. We detect wavy residuals around the best-fit reverberation model time lags at high frequencies. This result suggests that the simple lamp-post geometry does not fully explain the X-ray source/disc configuration in Active Galactic Nuclei. There has been a noticeable progress into the development of codes for extended coronae (Wilkins+16, Chainakun & Young 2017, Taylor & Reynolds 2018a,b). Indeed, the model from Chainakun & Young (2017), consisting of two axial point sources illuminating an accretion disc that produce the reverberation lags is able to reproduce the observed time-lag versus frequency spectra. The goal of this paper is to observationally justify the need for an extended corona in order to provide (in the near future) with a mathematical formulation of a model for an extended corona in its simplest form.



قيم البحث

اقرأ أيضاً

We present the first results obtained by the application of the KYNREFREV-reverberation model, which is ready for its use in XSPEC. This model computes the time dependent reflection spectra of the disc as a response to a flash of primary power-law ra diation from a point source corona located on the axis of the black hole accretion disc (lamp-post geometry). Full relativistic effects are taken into account. The ionisation of the disc is set for each radius according to the amount of the incident primary flux and the density of the accretion disc. We tested the model by fitting model predictions to the observed time-lag spectra of three Narrow-Line Seyfert 1 galaxies (ARK 564, MCG-6-30-15 and 1H 0707-495), assuming either a rapidly or zero spinning black hole (BH). The time-lags strongly suggest a compact X-ray source, located close to the BH, at a height of approx. 4 gravitational radii. This result does not depend either on the BH spin or the disc ionization. There is no significant statistical difference between the quality of the best-fits in the rapidly and zero spinning BH scenarios in Ark 564 and MCG-6-30-15. But there is an indication that the hypothesis of a non-rotating BH in 1H 0707-495 is not consistent with its time-lag spectrum. Finally, the best-fits to the Ark 564 and 1H 0707-495 data are of rather low quality. We detect wavy-residuals around the best-fit reverberation model time-lags at high frequencies. This result suggests that the simple lamp-post geometry does not fully explain the X-ray source/disc configuration in Active Galactic Nuclei.
X-ray variation is a ubiquitous feature of active galactic nuclei (AGNs), however, its origin is not well understood. In this paper, we show that the X-ray flux variations in some AGNs, and correspondingly the power spectral densities (PSDs) of the v ariations, may be interpreted as being caused by absorptions of eclipsing clouds or clumps in the broad line region (BLR) and the dusty torus. By performing Monte-Carlo simulations for a number of plausible cloud models, we systematically investigate the statistics of the X-ray variations resulting from the cloud eclipsing and the PSDs of the variations. For these models, we show that the number of eclipsing events can be significant and the absorption column densities due to those eclipsing clouds can be in the range from 10^{21} to 10^{24} cm^{-2}, leading to significant X-ray variations. We find that the PSDs obtained from the mock observations for the X-ray flux and the absorption column density resulting from these models can be described by a broken double power law, similar to those directly measured from observations of some AGNs. The shape of the PSDs depend strongly on the kinematic structures and the intrinsic properties of the clouds in AGNs. We demonstrate that the X-ray eclipsing model can naturally lead to a strong correlation between the break frequencies (and correspondingly the break timescales) of the PSDs and the masses of the massive black holes (MBHs) in the model AGNs, which can be well consistent with the one obtained from observations. Future studies of the PSDs of the AGN X-ray (and possibly also the optical-UV) flux and column density variations may provide a powerful tool to constrain the structure of the BLR and the torus and to estimate the MBH masses in AGNs.
The central engines of Active Galactic Nuclei (AGNs) are powered by accreting supermassive black holes, and while AGNs are known to play an important role in galaxy evolution, the key physical processes occur on scales that are too small to be resolv ed spatially (aside from a few exceptional cases). Reverberation mapping is a powerful technique that overcomes this limitation by using echoes of light to determine the geometry and kinematics of the central regions. Variable ionizing radiation from close to the black hole drives correlated variability in surrounding gas/dust, but with a time delay due to the light travel time between the regions, allowing reverberation mapping to effectively replace spatial resolution with time resolution. Reverberation mapping is used to measure black hole masses and to probe the innermost X-ray emitting region, the UV/optical accretion disk, the broad emission line region and the dusty torus. In this article we provide an overview of the technique and its varied applications.
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v~0.1-0.3c), highly-ionized (mainly visible in FeXXV and FeXXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.
112 - Loredana Bassani 2013
Hard X-ray surveys are an important tool for the study of active galactic nuclei (AGN): they provide almost an unbiased view of absorption in the extragalactic population, allow the study of spectral features such as reflection and high energy cut-of f which would otherwise be unexplored and favour the discovery of some blazars at high redshift. Here, we present the absorption properties of a large sample of INTEGRAL detected AGN, including an update on the fraction of Compton thick objects. For a sub-sample of 87 sources, which represent a complete set of bright AGN, we will discuss the hard X-ray (20-100 keV) spectral properties, also in conjunction with Swift/BAT 58 month data, providing information on BAT/IBIS cross-calibration constant, average spectral shape and spectral complexity. For this complete sample, we will also present broad-band data using soft X-ray observations, in order to explore the complexity of AGN spectra both at low and high energies and to highlight the variety of shapes. Future prospects for AGN studies with INTEGRAL will also be outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا