ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic zonal flow residual responses

132   0   0.0 ( 0 )
 نشر من قبل Istvan Pusztai
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The collisionless axisymmetric zonal flow residual calculation for a tokamak plasma is generalized to include electromagnetic perturbations. We formulate and solve the complete initial value zonal flow problem by retaining the fully self-consistent axisymmetric spatial perturbations in the electric and magnetic fields. Simple expressions for the electrostatic, shear and compressional magnetic residual responses are derived that provide a fully electromagnetic test of the zonal flow residual in gyrokinetic codes. Unlike the electrostatic potential, the parallel vector potential and the parallel magnetic field perturbations need not relax to flux functions for all possible initial conditions.

قيم البحث

اقرأ أيضاً

In tokamak plasmas, the interaction among the micro-turbulence, zonal flows (ZFs) and energetic particles (EPs) can affect the turbulence saturation level and the consequent confinement quality and thus, is important for future burning plasmas. In th is work, the EP anisotropy effects on the ZF residual level are studied by using anisotropic EP distributions with dependence on pitch. Significant effects on the long wavelength ZFs have been found when small to moderate width around the dominant pitch in the EP distribution function is assumed. In addition, it is found that ZF residual level is enhanced by barely passing/trapped and/or deeply trapped EPs, but it is suppressed by well passing and/or intermediate trapped EPs. Numerical calculation shows that for ASDEX Upgrade plasmas, typical EP distribution functions can bring in -3%~+5.5% mitigation/enhancement in ZF residual level, depending on the EP distribution functions.
204 - P. Monreal , I. Calvo , E. Sanchez 2015
In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are der ived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations performed with the GENE and EUTERPE codes. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.
In stellarators, zonal flow activity depends sensitively on geometry of the three dimensional magnetic field, via an interplay of mechanisms that is not fully understood. In this work, we investigate this by studying three magnetic configurations of the Wendelstein 7-X stellarator. We find that variation in linear zonal flow damping is accompanied by variation in nonlinear drive, and identify key geometric features that control these effects. Understanding the resulting balance is important for the development of reduced models of turbulent transport.
105 - J.Anderson , H. Nordman , R. Singh 2009
In the present work the zonal flow (ZF) growth rate in toroidal ion-temperature-gradient (ITG) mode turbulence including the effects of elongation is studied analytically. The scaling of the ZF growth with plasma parameters is examined for typical to kamak parameter values. The physical model used for the toroidal ITG driven mode is based on the ion continuity and ion temperature equations whereas the ZF evolution is described by the vorticity equation. The results indicate that a large ZF growth is found close to marginal stability and for peaked density profiles and these effects may be enhanced by elongation.
69 - J. Anderson , H. Nordman 2009
The role of magnetic shear for zonal flow generation by ion-temperature-gradient (ITG-) and trapped electron (TE-) mode turbulence is studied analytically using fluid descriptions. The scaling of the zonal flow (ZF) growth rate with magnetic shear is examined and compared with linear growth rates for typical tokamak parameter values. The results indicate that large levels of ZF are obtained in regions of negative magnetic shear, in particular for ZF driven by TE mode turbulence. The strong magnetic shear scaling obtained for TE mode driven zonal flows originates from the bounce average of the electron magnetic drifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا