ﻻ يوجد ملخص باللغة العربية
In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are derived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations performed with the GENE and EUTERPE codes. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.
In stellarators, zonal flow activity depends sensitively on geometry of the three dimensional magnetic field, via an interplay of mechanisms that is not fully understood. In this work, we investigate this by studying three magnetic configurations of
The collisionless axisymmetric zonal flow residual calculation for a tokamak plasma is generalized to include electromagnetic perturbations. We formulate and solve the complete initial value zonal flow problem by retaining the fully self-consistent a
The linear collisionless damping of zonal flows is calculated for quasi-symmetric stellarator equilibria in flux-tube, flux-surface, and full-volume geometry. Equilibria are studied from the quasi-helical symmetry configuration of the Helically Symme
In tokamak plasmas, the interaction among the micro-turbulence, zonal flows (ZFs) and energetic particles (EPs) can affect the turbulence saturation level and the consequent confinement quality and thus, is important for future burning plasmas. In th
We present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The