ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure

113   0   0.0 ( 0 )
 نشر من قبل J\\'ozsef Varga
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 $mu$m silicate feature from emission to absorption temporarily. Aims. We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results. The inner disk (r<1-3 au) spectra exhibit a 10 $mu$m absorption feature related to amorphous silicate grains. The outer disk (r>1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions. For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk.



قيم البحث

اقرأ أيضاً

138 - L. Podio , I. Kamp , C. Codella 2013
Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the oute r disk, where most of water ice reservoir is stored, was only reported in the closeby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para- water ground-state transitions at 557, 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are ~19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H2O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 Msun, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of ~1e2-1e3 Earth oceans in vapour, and ~100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by impact of icy bodies forming in the outer disk.
66 - M. Guedel 2018
Aims: We aim to use the high spatial resolution of the Atacama Large Millimeter/submillimeter Array (ALMA) to map the flow pattern of molecular gas near DG Tau and its disk, a young stellar object driving a jet and a molecular outflow. Methods: We us e observations from ALMA in the J = 2 - 1 transition of 12CO, 13CO, and C18O to study the Keplerian disk of DG Tau and outflows that may be related to the disk and the jet. Results: We find a new wind component flowing radially at a steep angle (~25 deg from the vertical) above the disk with a velocity of ~ 3.1 km/s. It continues the trend of decreasing velocity for increasing distance from the jet axis (onion-like velocity structure). Conclusions: The new component is located close to the protostellar disk surface and may be related to photoevaporative winds.
116 - A. M. Hughes 2013
Millimeter-wavelength polarization measurements offer a promising method for probing the geometry of magnetic fields in circumstellar disks. Single dish observations and theoretical work have hinted that magnetic field geometries might be predominant ly toroidal, and that disks should exhibit millimeter polarization fractions of 2-3%. While subsequent work has not confirmed these high polarization fractions, either the wavelength of observation or the target sources differed from the original observations. Here we present new polarimetric observations of three nearby circumstellar disks at 2 resolution with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter Astronomy (CARMA). We reobserve GM Aur and DG Tau, the systems in which millimeter polarization detections have been claimed. Despite higher resolution and sensitivity at wavelengths similar to the previous observations, the new observations do not show significant polarization. We also add observations of a new HAeBe system, MWC 480. These observations demonstrate that a very low (<0.5%) polarization fraction is probably common at large (>100 AU) scales in bright circumstellar disks. We suggest that high-resolution observations may be worthwhile to probe magnetic field structure on linear distances smaller than the disk scale height, as well as in regions closer to the star that may have larger MRI-induced magnetic field strengths.
By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the $H$ band with a spatial resolution of approximately 0.07$arcsec$ , revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab and part of a circumstellar structure that is noticeable around GG Tau Aa extending to a distance of approximately 28 AU from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to <13 AU. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, the semi-major axis of the binarys orbit is likely to be 62 AU. A comparison of the present observations with previous ALMA and near-infrared (NIR) H$_2$ emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies, the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation $lesssim$ 100 AU) young binary systems.
We present multi-epoch optical and near-infrared (NIR) photometry and spectroscopy of the spectroscopic binary T Tauri star DQ Tau. The photometric monitoring, obtained using SMARTS ANDICAM, recovers the previously-seen correlation between optical fl ux and the 15.8-day binary orbital period, with blue flux peaks occurring close to most observed periastron passages. For the first time, we find an even more consistent correlation between orbital period and NIR brightness and color. The onset of pulse events in the NIR on average precedes those in the optical by a few days, with the rise usually starting near apastron orbital phase. We further obtained five epochs of spectroscopy using IRTF SpeX, with a wavelength range of 0.8 to 5 microns, and derived spectra of the infrared excess emission. The shape and strength of the excess varies with time, with cooler and weaker characteristic dust emission (T ~ 1100-1300 K) over most of the binary orbit, and stronger/warmer dust emission (T ~ 1600 K, indicative of dust sublimation) just before periastron passage. We suggest our results are broadly consistent with predictions of simulations of disk structure and accretion flows around close binaries, with the varying dust emission possibly tracing the evolution of accretion streams falling inwards through a circumbinary disk cavity and feeding the accretion pulses traced by the optical photometry and NIR emission lines. However, our results also show more complicated behavior that is not fully explained by this simple picture, and will require further observations and modeling to fully interpret.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا