ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA detects a radial disk wind in DG Tau

67   0   0.0 ( 0 )
 نشر من قبل Manuel Guedel
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Guedel




اسأل ChatGPT حول البحث

Aims: We aim to use the high spatial resolution of the Atacama Large Millimeter/submillimeter Array (ALMA) to map the flow pattern of molecular gas near DG Tau and its disk, a young stellar object driving a jet and a molecular outflow. Methods: We use observations from ALMA in the J = 2 - 1 transition of 12CO, 13CO, and C18O to study the Keplerian disk of DG Tau and outflows that may be related to the disk and the jet. Results: We find a new wind component flowing radially at a steep angle (~25 deg from the vertical) above the disk with a velocity of ~ 3.1 km/s. It continues the trend of decreasing velocity for increasing distance from the jet axis (onion-like velocity structure). Conclusions: The new component is located close to the protostellar disk surface and may be related to photoevaporative winds.



قيم البحث

اقرأ أيضاً

We present Atacama Large Millimeter Array (ALMA) Band 6 observations at 14-20 au spatial resolution of the disk and CO(2-1) outflow around the Class I protostar DG Tau B in Taurus. The disk is very large, both in dust continuum (R$_{rm eff,95%}$=174 au) and CO (R$_{CO}$=700 au). It shows Keplerian rotation around a 1.1$pm$0.2 M$_{odot}$ central star and two dust emission bumps at $r$ = 62 and 135 au. These results confirm that large structured disks can form at an early stage where residual infall is still ongoing. The redshifted CO outflow at high velocity shows a striking hollow cone morphology out to 3000 au with a shear-like velocity structure within the cone walls. These walls coincide with the scattered light cavity, and they appear to be rooted within $<$ 60 au in the disk. We confirm their global average rotation in the same sense as the disk, with a specific angular momentum $simeq$ 65 au kms. The mass-flux rate of 1.7-2.9 $times$ 10$^{-7}$M$_{odot}$ yr$^{-1}$ is 35$pm$10 times that in the atomic jet. We also detect a wider and slower outflow component surrounding this inner conical flow, which also rotates in the same direction as the disk. Our ALMA observations therefore demonstrate that the inner cone walls, and the associated scattered light cavity, do not trace the interface with infalling material, which is shown to be confined to much wider angles ($> 70^{circ}$). The properties of the conical walls are suggestive of the interaction between an episodic inner jet or wind with an outer disk wind, or of a massive disk wind originating from 2-5 au. However, further modeling is required to establish their origin. In either case, such massive outflow may significantly affect the disk structure and evolution.
142 - L. Podio , I. Kamp , C. Codella 2013
Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the oute r disk, where most of water ice reservoir is stored, was only reported in the closeby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para- water ground-state transitions at 557, 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are ~19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H2O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 Msun, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of ~1e2-1e3 Earth oceans in vapour, and ~100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by impact of icy bodies forming in the outer disk.
104 - L. Podio , A. Garufi , C. Codella 2020
Planets form in protoplanetary disks and inherit their chemical composition. It is therefore crucial to understand the disks molecular content. We aim to characterize the distribution and abundance of molecules in the disk of DG Tau. In the context o f the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT) we analyse ALMA observations of the disk of DG Tau in H2CO 3(1,2)-2(1,1), CS 5-4, and CN 2-1 at ~0.15, i.e. ~18 au at 121 pc. H2CO and CS originate from a disk ring at the edge of the 1.3mm dust continuum, with CS probing an outer disk region with respect to H2CO (peaking at ~70 and ~60 au, respectively). CN originates from an outermost disk/envelope region peaking at ~80 au. H2CO is dominated by disk emission, while CS probes also two streams of material possibly accreting onto the disk with a peak of emission where the stream connects to the disk. The ring- and disk-height- averaged column densities are ~2.4-8.6e13 cm-2 (H2CO), ~1.7-2.5e13 cm-2 (CS), and ~1.9-4.7e13 cm-2 (CN). Unsharp masking reveals a ring of enhanced dust emission at ~40 au, i.e. just outside the CO snowline (~30 au). CS and H2CO emissions are co-spatial suggesting that they are chemically linked. The observed rings of molecular emission at the edge of the 1.3mm continuum may be due to dust opacity effects and/or continnum over-subtraction in the inner disk; as well as to increased UV penetration and/or temperature inversion at the edge of the mm-dust which would cause an enhanced gas-phase formation and desorption of these molecules. Moreover, H2CO and CS originate from outside the ring of enhanced dust emission, which also coincides with a change of the linear polarization at 0.87mm. This suggests that outside the CO snowline there could be a change of the dust properties which would reflect in the increase of the intensity (and change of polarization) of continuum, and of molecular emission.
Theories of massive star formation predict that massive protostars accrete gas through circumstellar disks. Although several cases have been found already thanks to high-angular resolution interferometry, it remains unknown the internal physical stru cture of these disks and, in particular, whether they present warps or internal holes as observed in low-mass proto-planetary disks. Here, we report very high angular resolution observations of the H21alpha radio recombination line carried out in Band 9 with the Atacama Large Millimeter/submillimeter Array (beam of 80 mas x 60 mas, or 70 au x 50 au) toward the IRS2 massive young stellar object in the Monoceros R2 star-forming cluster. The H21alpha line shows maser amplification, which allows us to study the kinematics and physical structure of the ionised gas around the massive protostar down to spatial scales of ~1-2 au. Our ALMA images and 3D radiative transfer modelling reveal that the ionized gas around IRS2 is distributed in a Keplerian circumstellar disk and an expanding wind. The H21alpha emission centroids at velocities between -10 and 20 km s-1 deviate from the disk plane, suggesting a warping for the disk. This could be explained by the presence of a secondary object (a stellar companion or a massive planet) within the system. The ionized wind seems to be launched from the disk surface at distances ~11 au from the central star, consistent with magnetically-regulated disk wind models. This suggests a similar wind launching mechanism to that recently found for evolved massive stars such as MWC349A and MWC922.
We present 1.3 mm observations of the Sun-like star $tau$ Ceti with the Atacama Large Millimeter/submillimeter Array (ALMA) that probe angular scales of $sim1$ (4 AU). This first interferometric image of the $tau$ Ceti system, which hosts both a debr is disk and possible multiplanet system, shows emission from a nearly face-on belt of cold dust with a position angle of $90^circ$ surrounding an unresolved central source at the stellar position. To characterize this emission structure, we fit parametric models to the millimeter visibilities. The resulting best-fit model yields an inner belt edge of $6.2^{+9.8}_{-4.6}$ AU, consistent with inferences from lower resolution, far-infrared Herschel observations. While the limited data at sufficiently short baselines preclude us from placing stronger constraints on the belt properties and its relation to the proposed five planet system, the observations do provide a strong lower limit on the fractional width of the belt, $Delta R/R > 0.75$ with $99%$ confidence. This fractional width is more similar to broad disks such as HD 107146 than narrow belts such as the Kuiper Belt and Fomalhaut. The unresolved central source has a higher flux density than the predicted flux of the stellar photosphere at 1.3 mm. Given previous measurements of an excess by a factor of $sim2$ at 8.7 mm, this emission is likely due to a hot stellar chromosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا